Real-time Motion Planning of Multiple Formations in Virtual Environments: Flexible Virtual Structures and Continuum Model

Yi Li & Kamal Gupta

Robotic Algorithms & Motion Planning (RAMP) Lab School of Engineering Science Simon Fraser University

Agenda

- Introduction
- Related work
- More on the Continuum Model
- Motion Planning of Multiple Formations
- Conclusion & Future Work

Introduction

Motions in Virtual Environments and Games

- Four different types of motions in virtual environments and games: **navigation**, animation, manipulation, and camera.
- We assume that there is **no uncertainty** in the agents' motions and virtual environments are given as **binary occupancy grids**. However, movements of dynamic obstacles are NOT given beforehand.

Real-time Tactical (RTT) Games

- Multiple Agents.
- Real-Time.
- Dynamic.
- Complexity.
- Coherence (e.g., formations).
- Inexpensive Pre-processing.

- A real-time crowd simulation framework based on the Fast Marching Method (FMM).
- It computes a set of potential fields (using the FMM) over the domain that guide all agents' motions simultaneously.
- It unifies global planning and local planning no conflicting requirements between global
 planning and local obstacle avoidance.

Formation breaks and rejoins: not desirable at times.

Ordered obstacle avoidance while maintaining the formation.

Agenda

- Introduction
- Related work
- More on the Continuum Model
- Motion Planning of Multiple Formations
- Conclusion & Future Work

Related Work

Motion Planning of Multiple Agents

- **Centralized planning**: Considers all agents as one robotic system with many DOFs, and its time complexity is exponential in the dimension of the composite configuration space.
- **Decoupled planning**: Proceeds in a distributed manner and coordination is often handled by exploring a *coordination space*. Much faster, but not complete.

Motion Planning of Multiple Agents in Dynamic Environments

- The motions of the obstacles are given beforehand: The concept of the configurationtime space can be used to solve the planning problem.
- No prior information about the movements of the obstacles: **Path Modification** (e.g., elastic bands, elastic strips, the adaptive roadmap based algorithm) and **Replanning** (e.g., the D* deterministic planning algorithms, the multi-agent navigation graph (MaNG)).

Motion Planning of Multiple Agents as a Group

- In the continuum model, agents in each group share the same goal, but they do not stay together.
- Flocking / Several steering behaviors.
- Enclose a group by a deformable rectangle. The agents' total motions are given by combining the global motions of the group (PRM) and the local motions of the agents (group potential fields).
- Extend the backbone path for a single agent to a **corridor** using the clearance along the path. All agents must remain inside a group region (part of the corridor).

Motion Planning of Multiple Agents as a Formation

- The leader-follower approach: cannot maintain the formation if a follower is perturbed.
- The behavior based approach: inadequate when the formation shape needs to be changed.
- The virtual structure approach: no automatic reconfiguring strategy.

Agenda

- Introduction
- Related work
- More on the Continuum Model
- Motion Planning of Multiple Formations
- Conclusion & Future Work

More on the Continuum Model

The Fast Marching Method

 John N. Tsitsiklis, "Efficient algorithms for globally optimal trajectories," IEEE Transactions on Automatic Control 40(9), 1995.

The Fast Marching Method

$$\|\nabla \phi(\mathbf{x})\| = C$$

$$C > 0$$

$$\phi(g_b) = 0$$

The Fast Marching Method

$$\left(\frac{\phi_M - \phi_{m_X}}{C_{M \to m_X}}\right)^2 + \left(\frac{\phi_M - \phi_{m_Y}}{C_{M \to m_Y}}\right)^2 = 1$$

$$m_{x} = arg \min_{i \in \{W,E\}} \{\phi_{i} + C_{M \to i}\}$$

 $m_{y} = arg \min_{i \in \{N,S\}} \{\phi_{i} + C_{M \to i}\}$

• A. Treuille, S. Cooper, and Z. Popovic, "Continuum crowds," SIGGRAPH'06, 2006.

- Minimize a linear combination of the following terms:
 - 1) The length of the path;
 - 2) The amount of time to the goal;
 - 3) The discomfort felt, per unit time, along the path.

$$C = \alpha + \beta \frac{1}{f} + \gamma \frac{g}{f}$$
 where f is the speed field g is the discomfort field

- Low crowd densities → Speed is dominated by the terrain (constant on flat surfaces, but changing with the slope).
- High crowd densities → Speed is dominated by the movements of nearby agents (e.g., movement is inhibited when trying to move against the flow).

When two agents cross perpendicularly →
Add discomfort in front of each agent →
The agents anticipate each other.

```
foreach simulation cycle do
Construct the density field;
foreach group do
Construct the unit cost field C;
Construct the potential φ and its gradient ∇φ;
Update agents' locations;
end
Enforce the minimum distance between the agents;
end
```

Real-Time Crowd Flows Using Fast Marching Method

Yi Li & Kamal Gupta
Robotic Algorithms and Motion Planning (RAMP) Lab
School of Engineering Science
Simon Fraser University
8888 University Drive
Burnaby, British Columbia V5A 1S6
Canada

Video: Continuum Crowds.

Agenda

- Introduction
- Related work
- More on the Continuum Model
- Motion Planning of Multiple Formations
- Conclusion & Future Work

Motion Planning of Multiple Formations

Video: Motion Planning of Multiple Formations.

$$\mathbf{u} = \mathbf{At}$$
 $\mathbf{u}_{int} = \mathbf{G}_{int}\mathbf{t} - \mathbf{F}_{int}\mathbf{u}$
 $\mathbf{u}_{ctrl_c} = (\mathbf{G}_{ctrl} - \mathbf{F}_{ctrl}\mathbf{A})\mathbf{t}$
 $E(\mathbf{t}) = \|\mathbf{u}_{ctrl_d} - \mathbf{u}_{ctrl_c}\|$

Average computation time for one deformation in millisecond

N is the number of agents.

K is the number of the control nodes. E is the number quadratic elements (2E boundary nodes).

Formation Definition.

Formation Mapping.

Curvature Constrained Path Planning

- Clément Pêtrès etc., "Path Planning for Autonomous Underwater Vehicles," IEEE Transactions on Robotics, 23(2), 2007.
- Smooth the cost function → Increase the lower bound of the curvature radius of an optimal path.
- Large grid: 1000 x 1000

```
1 foreach simulation cycle do
       foreach formation R_i do
 2
            Construct f_i, g_i, and C_i;
 3
            Compute \phi_i and \nabla \phi_i using the FMM;
            Construct waypoints for R_i;
 5
            Update positions of R_i's agents using social potential fields;
 6
           if (\phi_i({}^w\mathbf{x}_i^0(t))) is very high or a command is given by the user ) then
 7
                Deform R_i;
            end
       end
10
11 end
```

Motion Planning of Multiple Formations:

Apply the continuum model to formations. High potential → Try a list of different deformations (precomputed or compute in real-time).

Average Running Time of ONE Simulation Cycle (sec)

Minkowski sum computations between the formations is done naively (i.e., a formation, when planning its next move, takes all other formations into account).

Agenda

- Introduction
- Related work
- More on the Continuum Model
- Motion Planning of Multiple Formations
- Conclusion & Future Work

Conclusion and Future Work

Conclusion

- Proposed flexible virtual structure approach to model formations.
- Proposed a real-time motion planner for multiple tightly controlled formations.
- The motion planning algorithm for multiple formations is the first one that does not use adhoc and local approaches and hence agents in a formation does not split easily from the formation.

Future Work

- Plan motions of more formations in real-time.
- When planning for one formation, the agents may run into local minima (even though potentials generated by the FMM are free of local minima analytically).
- Partition the environments into unstructured meshes.
- Tune the three weights in the unit cost field automatically.

KUNGL. INGENJÖRSVETENSKAPSAKADEMIEN Royal Swedish Academy of Engineering Sciences

A special thank you to *Dr. Kevin T. Chu* at Princeton University, *Prof. Shigeru Kuriyama* at Toyohashi University of Technology (TUT), and *Royal Swedish Academy of Engineering Sciences (IVA)*.