Deformable Distance Fields for Simulation of Non-Penetrating Flexible Bodies

Susan Fisher and Ming C. Lin

{sfisher, lin}@cs.unc.edu
http://gamma.cs.unc.edu/DDF/
Department of Computer Science
University of North Carolina at Chapel Hill
USA

DEFINITIONS

◆ Penetration Depth [for rigid objects] minimum translational distance required to separate two intersecting objects

DEFINITIONS

◆ Distance Field -

shortest distance to the surface for any point within a 3D object

* Can be represented with pseudocolors, or a single color gradient

Robotics

- Virtual prototyping
- Surgical planning, design of elastic tubes in medical devices

Animation

Sliding contact, deforming elastic bodies

MAIN CONTRIBUTION

A novel penetration depth estimation algorithm based on the deformation and partial update of distance fields computed using the fast marching level set method

- Fast Marching Level Set Method
- Penetration Depth
- Distance Fields

- ♦ Fast Marching Level Set Method
- Penetration Depth
- Distance Fields

- ♦ Fast Marching Level Set Method
 - Osher and Sethian [1988], Sethian [1999]
 - Kimmel et al. [1995]
- Penetration Depth
- Distance Fields

- Fast Marching Level Set Method
- **♦** Penetration Depth
- Distance Fields

- Fast Marching Level Set Method
- Penetration Depth
 - Buckley and Leifer [1985], Cameron+Culley [1986]
 - **Dobkin** [1993]
 - Agarwal et al. [2000]
 - Kim et al [2002, 2003]
 - Zhang & Manocha [2006, 2007]
- Distance Fields

- Fast Marching Level Set Method
- Penetration Depth
- **♦ Distance Fields**

- Fast Marching Level Set Method
- Penetration Depth
- **♦ Distance Fields**
 - Hoff et al. [1999,2001]
 - Frisken [2000]
 - Hirota, Fisher, Lin [2000]
 - Sud et al. [2006]

- Introduction
- Simulator Overview
- Computation of Distance Field
- Update of Distance Field
- Penetration Depth Estimation
- Results

SIMULATOR OVERVIEW

- Tetrahedral elements
- Linear shape functions
- ♦ Deformation function $p \rightarrow \phi(p)$
- Finite Element Analysis
 - static analysis
 - constrained minimization using constitutive law

Figure 1: $\phi(p)$ maps four nodes of a tetrahedral element to new positions

- Introduction
- Simulator Overview
- Computation of Distance Field
- Update of Distance Field
- Penetration Depth Estimation
- Results

TRADITIONAL METHODS

 Traditional projection search methods provide a *discontinuous* solution

MARKER METHODS

- Markers can get stretched out
- Sharp cusps are *not* preserved

LEVEL SET METHODS

- Provides a continuous solution
- Avoids reparameterization due to control markers spreading apart
- Can handle sharp corners and cusps
- Requires no specialized hardware

Initialize

- walk through each triangle,
 computing exact distance
 for gridpoints within its
 AABB
- if two AABB's overlap, the smaller value is used

Marching

- Extract minimum valued gridpoint on the front, and recompute its value
- Update other neighbors on the front
- Add any remaining neighbors to the front

- Introduction
- Simulator Overview
- Computation of distance field
- Update of Distance Field
- Penetration Depth Estimation
- Results

WHY UPDATE?

- Penetration depth computed based on pre-assigned distance values
- After deformation, affected elements may have incorrect distance values

IROS 2008 Tutorial

COLLISION DETECTION

- Need to identify region of change
 - Hierarchical Sweep and Prune when NURBS representations are available
 - Lazy evaluation of possible intersection using Bounding Volume Hierarchies (AABB)

- Bounding box is expanded to insure continuity
- Within this expanded bounding box, the same algorithm is applied

DISTANCE FIELD UPDATE

- New distance values are used, but are blended with the old at the edges
- Blend region size is a user parameter

DISTANCE FIELD UPDATE

 Values are blended in each dimension successively

- C1 continuity is verified by checking first derivatives
- For discontinuous cases, there are two options:
 - 1. Expand bounding box of region of change and recompute
 - 2. Recompute entire field
- ◆ In practice, the two fields always provided a continuous solution

- Introduction
- Simulator Overview
- Computation of Distance Field
- Update of Distance Field
- Penetration Depth Estimation
- Results

PENETRATION DEPTH

 Linear interpolation provides the penetration depth:

$$m = u_1 n_1 + u_2 n_2 + u_3 n_3 + (1 - u_1 - u_2 - u_3) n_4$$

The distance from m to the white triangle is the penetration depth

FRAMEWORK

- This work is a general algorithm which can be used in other simulation frameworks, not just FEM
 - FDM (Finite Difference Method)
 - Spring-Mass Network

- Introduction
- Simulator Overview
- Computation of Distance Field
- Update of Distance Field
- Penetration Depth Estimation
- Results

RESULTS

♦ 50 x 50 x 50 grid resolution

RESULTS - MPEGS

RESULTS - MPEGS

SUMMARY

Fast, adaptive method to estimate penetration depth for deformable objects

- Versatile input format
- Handles self collisions and inter-object collisions in an uniform manner
- Can trade off speed for accuracy

RECENT WORK

• GPU to compute 3D distance fields and update it on the fly. See Sud et al. [2006]

http://gamma.cs.unc.edu/gvd

FUTURE WORK

- Quantify effect of grid resolution on accuracy of simulation
- Explore continuity issues if adaptive grids are used to compute the distance fields

ACKNOWLEDGEMENTS

- Special thanks to Gentaro Hirota and David Adalsteinsson
- Funded by ARO, NSF, ONR, Intel