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Abstract 

The Motion Planning Toolkit (MPK) is a joint research project conducted with input 

from researchers at Simon Fraser University, the National Research Council, and 

International Submarine Engineering.  The MPK system is a programming project that I 

undertook as partial fulfillment of my bachelor’s thesis requirements, representing my 

effort to create a general software toolkit that programmers could use in the development 

of motion planning algorithms.  A motion planning algorithm attempts to plan a path for 

a robot operating in a complex environment such that the robot will not collide with its 

surroundings. 

 

The MPK system is made up of two distinct sub-projects; a code toolkit and a web based 

application.  The code toolkit refers to a software library that third party programmers 

will use to speed up development of motion planning algorithms.  It consists of code that 

allows programmers access to general robotic data structures and algorithms.  The web 

based application serves as a platform for demonstrating the functionality of the MPK as 

well as for allowing us to test and debug the underlying code. 

 

The web based application is a client server application running over the Internet.  

Implementing it this way allows researchers who may be interested in the MPK to 

evaluate its performance through the web, before they go through the trouble of 

downloading and compiling what could easily be a very large body of code.  It also 

allows them to evaluate the suitability of various planners to specific problems, and 

perform some degree of benchmarking on different algorithms. 

 

My focus on this project was to come up with an overall system design, then to focus on 

the implementation details of two key components, geometry and kinematics.  In 

addition, I also designed other areas of the system, including the server side of the web 

based application.  Currently, the core system architecture is fairly complete.  I anticipate 

that it will require only minor changes to support future development work.  The 

implementation, however, is not complete.   
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Chapter 1  Introduction 

1.1 Robot Motion Planning: What is it? 

“Motion planning, in its broadest sense, refers to the ability of a robot to plan its own 

motions.”[1] More specifically, the basic motion planning problem[2] is defined as 

follows: given an initial and goal robot configuration, find a path between them, avoiding 

collisions with all obstacles along the way.  Robotic motion planning incorporates many, 

somewhat diverse, areas of study including artificial intelligence and geometric 

reasoning.  It also has applications to areas outside of pure robotics, including uses in 

animation and in the video game industry.  In fact, many of the concepts used in motion 

planning fall under the broad header of geometric reasoning – solving problems based on 

geometric descriptions.  These problems may include motion planning, grasping 

problems, part positioning, etc. 

1.2 Current State of the Field  

The field of robot motion planning comprises a large body of academic research and 

literature while remaining an active area of investigation.  Although many researchers 

believe that aspects of the technology could be well utilized in industrial systems, there 

has been little direct industrial application of motion planning methods.  One contributing 

factor for this lack of application is the scarcity of proper tools.  Commercially available 

robot simulators (ACT, IGRIP, ROBCAD) tend to have some limited motion planning 

capabilities, typically oriented towards a particular technique.  The majority of research 

efforts are focused on developing new representations and search methods, and the code 

artifacts tend to be of a home-grown variety, unsuitable for extensive reuse. 

 

Since the late 1970s, a big tool in solving  motion planning problems has been the notion 

of configuration space (C-space)[2] of the robot.  This C-space represents an N 
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dimensional space in which each dimension corresponds to one degree of freedom of the 

manipulator[3].  A point in C-space, therefore,  corresponds to a configuration of the 

robot where each joint is at a position represented by its value along the corresponding C-

axis. The configuration represented by a point in C-space can either be a valid, collision 

free, one for a robot, or the robot can be in collision if placing it in that configuration 

would cause it to interfere with an obstacle.  The regions that correspond to the robot 

being in collision with obstacles are termed C-obstacles.  Since the mid 1980s, it has been 

apparent that obtaining an analytic description of C-obstacles is very difficult.  The 

equations that govern its correspondence to the robot's position in Cartesian space are 

highly non-linear.  After this time, use of a discretely sampled version of C-space has 

come into vogue.  C-space is sampled, and a search mechanism operates on the discrete 

samples to complete the motion planning task.  This search mechanism is what we 

describe as a planner for motion planning purposes.  The context of planning system that 

I will use is that of a search mechanism (planner) in conjunction with a collision detector, 

a mechanism that can check if a discrete robot configuration is in collision or not.  

 

Comparing different methods of motion planning is complicated by the lack of 

standardized tools; there is no way to place these planners on equal footing for the 

comparison.  The relative advantages and drawbacks of any given method are often 

subtle and situation dependent.  An enumeration of an algorithm’s computational 

complexity is provided in most papers, but is rarely sufficient for a meaningful 

comparison of algorithms.  Something more is clearly required. 

1.3 MPK Project 

The motion planning kernel (MPK) is aimed at addressing these issues and is a general 

system for testing various motion planning algorithms on different robot manipulator 

configurations.  The system was designed with generality in mind, so as few limitations 

as possible were placed on manipulator structure and environment configuration.  This 

design allows a uniform evaluation of the speed and effectiveness of various motion 

planning algorithms when applied to particular situations. 
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The system is an open source project that will be easily extensible by future researchers.  

This ease of extensibility will allow for the addition of new motion planning algorithms 

as they are developed and the underlying system will be general enough so as to make 

these additions as straightforward as possible.  Currently, the system has been completed 

to the point where the basic motion planning problem discussed in 1.1 can be addressed.  

Users are currently able to define robots, and perform collision detection on the robots 

they have created.  This functionality is all that is required for the creation of planners to 

solve the basic problem.  In addition, several planners have already been implemented 

within the MPK framework for benchmarking purposes.  Future additions to the project 

will include unknown environments, sensors, simulation, multiple robots, dynamic 

analysis, specification of forces, and speeds, etc.  Provisions to allow for this type of 

functionality have been built in from the initial design phase through to the current state 

of the project. 

 

The MPK has two distinct facets.  First, it represents a code library that programmers can 

use when developing systems requiring robotic information or geometric reasoning tasks.  

Second, it represents an interactive system that researchers can use over the web to try 

out various motion planning algorithms on specific problems, evaluating planner 

performance and benchmarking speed.  This web based application operates on a client 

server model, using a Java front end running through a web browser.  The front end 

communicates with a server application running locally on an SFU machine. 

 

MPK
Server

UI

C++ Server
Running at SFU

Java UI
Running Through Web

 

Figure 1: Client Server System Architecture  
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We chose a Java Front end because it is a cross platform, cross browser language, so it 

gives us a large base of people that can test out the MPK.  C++ was chosen for the server 

side implementation due to the large number of third party libraries that exist in C/C++ 

that could be added to the server.  PC platforms were chosen because one of the partners 

in the project, ISE, uses PC’s almost exclusively. 

 

What the MPK contributes to the field of robotics and motion planning is a general 

platform upon which to build programs that require a foundation in robotic geometry.  

The MPK provides users a code framework that allows them to set up robot kinematic 

structures easily and subsequently import geometry that will flesh out the description of 

the robot.  

 

Once a robot has been described, the user can use it in a very high level fashion.  All the 

mundane “bookkeeping” is taken care of by the MPK.  Hiding the bookkeeping allows 

users to focus on more high level problems, such as the design of new algorithms, 

without getting needlessly bogged down in the details of designing a system that could 

easily become quite large. 

 

Additionally, writing code in an MPK framework allows users immediate access to the 

wide range of sample data that we have created.  Designing simple robots is not a 

difficult task, but as the complexity of kinematics and geometry increases, the time 

required to design the robot also increases.  Using the MPK allows users to use pre-

created libraries of robots, and working environments, making testing of algorithms a 

simpler task and allowing for algorithm benchmarking to be performed on an equal 

footing.   

 

First and foremost, the MPK (Motion Planning Kernel) system is envisioned as a testbed 

in which researchers can evaluate different motion planning algorithms in situations that 

closely resemble the real world applications they may be considering.  The user of the 

system should be able to specify a manipulator structure, the kinematics and geometry 

that define a robotic manipulator.  They will also be able to specify the workspace of this 
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robot along with any obstacles that may exist within the workspace.  The user will then 

define a task for the robot to perform.  In the simplest motion planning example, this task 

would be simply a start and a goal configuration for the manipulator.  

 

Once the user has specified all the criteria above, the evaluation can be performed.  

Multiple algorithms are available in the system that are capable of tackling the problem 

that the user has specified.  The user will be able to run each of them in turn, observing 

the results, and measuring the time the algorithm took to perform its task.  In this way, 

users can decide for themselves which algorithms best suit the particular problem they 

need to solve.   

1.4 My Contribution to the Project 

This thesis focuses on the design and implementation of several core areas of the MPK.  

The overall design of the MPK is discussed; along with a detailed design of two core 

areas to which I contributed.  The two areas I worked extensively on are the Geometry 

module and the Kinematics module of the system.  I left other aspects of the project such 

as the user interface, and Internet connectivity sections to others, although some work on 

these areas was necessary to get the system up and running. 

 

The MPK system that has been developed to this point contains multiple motion planning 

algorithms, along with several different collision detection schemes for these algorithms 

to use.  Currently, a prototype user interface to the MPK using the Microsoft Foundation 

Classes (MFC), has been designed.  MFC was chosen because it speeds up UI 

prototyping on the PC.  This UI is a standalone program that runs on a Windows 

platform.  A web based application, complete with a JAVA front end has been developed 

that conforms to this prototype.  See [8] for more information. 

 

Since the MPK will serve as a code toolbox for future robotics based application 

development, object oriented structures (classes) for robotic manipulators, environments, 

collision detection, and motion planning have been created and made available to the end 

user.  This modularity is done in such a way that making additions or modifications to 
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any of the above components will be easy to accomplish, but should be generally 

unnecessary.  The robotic classes should be adequate as they stand for most tasks. 

 

The extensibility of the system is due in part to its open source nature, in much the same 

way as other institutions provide academic software systems.  For example, the 

University of Utrecht in the Netherlands provides an open source library for 

computational geometry – CGAL, and The University of North Carolina provides several 

libraries for collision detection of polyhedral meshes.  Some of these libraries are used 

within the MPK system, in much the same way that I hope my system will find its way 

into other more complicated projects. 

1.5 Thesis Layout 

The overall MPK system design is described in Chapter 2.  It includes an overview of the 

various modules of the system, along with a functional specification for the web based 

user interface.  

 

Chapter 3 goes into far more depth of the system design than does Chapter 2.  It describes 

the inner workings of the modules, as well as functional descriptions of all the important 

objects in the system.   

 

Because the MPK is far from complete, Chapter 5 outlines various directions in which 

the project can be taken.  Many of the suggestions outlined in this chapter already have 

the groundwork laid for their implementation. 
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Chapter 2 MPK Design 

In order to design a software system of this magnitude, a very detailed design approach 

was followed.  System maintainability is of the utmost importance, since other 

researchers will use the code written for the MPK in their software systems. 

2.1 Maintainability 

A big problem associated with systems as large as the MPK is that when future 

researchers examine the code, they often won’t know where to begin.  What will be 

beneficial to them is some sort of roadmap illustrating which sections of code interact 

with each other, and in what manner.  In the context of an object oriented system, which 

the MPK is, this roadmap translates to the need for an Object Relationship Diagram 

(ORD).  Many tools exist for creating such a diagram, some of which also incorporate 

automatic code generation and commenting.  I chose to use an evaluation version of the 

Rose tool from Rational Software to assist me in this area. 

 

Rational Rose is a software tool that allows me to draw universal modeling language 

(UML) diagrams, annotate them, and generate an automatic code framework from the 

UML structure.  Once the UML diagram has been created, it is extremely easy to see 

what parts of the software interact with one another, and in what manner. 

2.2 UML Overview 

Given that several UML diagrams will be appearing throughout this document, a brief 

tutorial on the symbols and structure of UML is in order.  I will tailor this discussion to 

UML as applied to an object oriented C++ program, since that is the area in which I used 

it in this project.  Of course, UML is applicable to a wide variety of problems beyond 

C++ code, but that is beyond the scope of this document. 
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2.2.1 Objects 

The basic entity in Object Oriented Programming (OOP) is the Object.  In C++, this 

entity is equivalent to the class.  UML represents classes graphically as shown in Figure 

2.  

ClassName

 

 Figure 2: UML Class 

A class defined as above would generate C++ code equivalent to that shown in Figure 3 

class ClassName 

{ 

}; 

 

Figure 3: C++ Equivalent of an Object 

The name of the class is shown in the topmost field of the box in the UML diagram, 

followed by two additional fields below.  These additional fields can contain class 

attributes and operations.  Attributes are stored in the first field and are best thought of as 

data members of the C++ class.  Figure 4 shows an example of a class with an attribute.  

The attribute is displayed with its name, followed by its data type, in this case: unsigned 

int, one of C++’s atomic types. 

Class1

attributeName : unsigned int

 

Figure 4: Object with an Attribute 

Immediately to the left of the attribute’s name, is a modifier specifying the visibility of 

the data member.  These represent the C++ reserved words public, protected, and private.  

The set of UML visibility modifiers is shown in Figure 5. 
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Public

Protected 

Private

 

Figure 5: UML Visibility Modifiers  

The plain square indicates an attribute with public visibility, the key, protected visibility, 

and the lock, private visibility. 

 

The UML object shown in Figure 4 would generate C++ code similar to  

Class class1 

{ 

private: 

 unsigned int attributeName ; 

} 

Figure 6: C++ Code Fragment for a Class with an Attribute 

In addition to attributes, UML objects can also contain operations, shown graphically in 

the bottommost field of the class diagram.  These are equivalent to methods or member 

functions in traditional Object Oriented terminology.  A UML object with an operation is 

shown in Figure 7. 

Class2

operation()
 

Figure 7: UML Object with an Operation 

2.2.2 Object Containment 

In addition to class attributes, UML also supports an aggregation modifier that helps 

create aggregate classes.  The diamond arrow in Figure 8 indicates that ClassA contains 

ClassB.  In fact, there are two separate aggregate class modifiers.  The white diamond 

indicates that ClassA contains ClassB by reference – it contains a pointer to ClassB only, 
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while the solid black diamond indicates ClassA contains ClassB by value, it is completely 

contained by ClassA. 

ClassBClassA

 

ClassBClassA

 

Figure 8: Example of an Aggregate Class 

In Figure 8, the white diamond aggregation would generate code similar to the following: 

class ClassB 

{ 

}; 

class ClassA 

{ 

private: 

 ClassB* myClassB ; 

} 

Figure 9: Code Generation of Aggregate Classes 

2.2.3 Class Inheritance 

Object Oriented programming maintains that code reuse can be enhanced through the 

mechanism of class inheritance.  This paradigm holds that a parent class will pass on all 

of its traits to classes that are derived from it.  In order to make class derivation 

graphically clear in UML, an additional modifier is presented, that is the generalization 

modifier. 
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ClassC

ClassD

 

Figure 10: Class Inheritance in UML 

In Figure 10, ClassD inherits from ClassC, and would generate code similar to the 

following: 

class ClassD 

{ 

}; 

class ClassC: public ClassD 

{ 

} 

Figure 11: Code Fragment for Derived Class 

The difference between class inheritance and class aggregation can be explained through 

the IS-A vs. HAS-A relationship.  Inheritance represents the IS-A relationship, while 

aggregation represents a HAS-A relationship.  Figure 12 shows the difference between 

the two.  In this example, a sailboat IS-A boat, thus it inherits from the boat class.  The 

sailboat also HAS-A sail.  The parent class (Boat) in turn HAS-A captain, thus the child 

class, sailboat, also HAS-A captain through inheritance. 

  

Figure 12: Illustration of the IS-A vs. HAS-A Relationship 

2.2.4 Explanatory Arrows 

Not all the symbols in UML have a direct code equivalent.  Explanatory arrows for 

example are used merely to convey a concept, and not to refer to any code per se. 
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Has Some Relationship

ClassA

ClassB

 

Figure 13: Illustration of Explanatory Arrows 

The explanatory arrows shown in Figure 13 are a perfect example of this.  The two 

classes have some relationship to one another, but it is not as well defined as the IS-A or 

HAS-A relationship.  Mostly, this is used as a descriptive tool to explain some additional 

relationship between two classes. 

2.3 User Interface Functional Specifications 

As mentioned in section 1.3, one aspect of the MPK is an interactive system in which 

users design robots and environments, and test various motion planning tasks.  This 

application makes use of much of the code in the code toolkit aspect of the project, and 

therefore guarantees that the code toolkit is adequately exercised from a software testing 

perspective. 

 

A complete design of the interactive system includes a web based front end, 

communicating with a server system resident on a PC based Windows NT system.  

Running the server on a Windows NT PC platform is not a design requirement, per se, 

however my existing familiarity with this platform made design much easier.  From the 

user’s perspective there should be no difference perceived with regard to what particular 

platform the server is running on. 

 

The typical scenario in which a user would operate this application is shown in Figure 14 
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1. Design a robot 

2. Design an environment composed of obstacles 

3. Formulate a planning task 

4. Choose algorithms, and run a test 

5. Evaluate the results 

Figure 14: User Workflow for the Web Based Application 

Once the user completes this cycle, they will likely wish to iterate on some part of the 

design.  Thus, the ability to modify any part of the user’s design is an integral 

consideration in all functional areas of the program.  In particular, the user may want to 

alter the motion planning algorithm and the planning task (start and goal configuration) 

they requested.  Alterations to the robot and the environment obviously will take place, 

but are likely to be less frequent. 

2.3.1 User Creates a Robot in the System 

Designing a robot is a non-trivial task for the user.  It involves specifying the kinematic 

structure of the along with the physical geometry representing each link.  Currently the 

MPK supports the most common way of describing kinematic structure; that of Denavit-

Hartenberg (DH) notation, making specification of a robot rather straightforward.  All the 

user need supply to describe a link is the DH parameters associated with it, and the 

previous link in the chain.  Since many physical robots already have DH parameters 

defined for them, often from the factory, specifying them is not likely to be difficult. 

 

Previous link information for each link in the chain is required so that the MPK can 

support branched robot structures such as a robotic hand.  DH parameters by themselves 

can only specify a single, unbranched, open chain robot.  Adding the additional 

information allows us to maintain the familiar DH notation, but support a wider array of 

robots.  

 

The geometric description of a robot is somewhat more difficult for the user to define 

interactively.  An online description of complex polyhedral meshes is not a feasible 

solution to the geometry problem because it is far too arduous for a user to specify.  
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Instead, the MPK web based interface supports reading predefined geometry from the 

user’s file system through VRML 1.0 and 2.0 file formats.  Also supported will be the 

online definition of simple geometric entities – rectangular boxes, spheres, etc using the 

mouse and the keyboard.  Although a user using only the web based application may be 

somewhat limited with regard to the complexity of robot and environment that can be 

created, the tradeoff in terms of usability and rapid prototyping is a good one. 

 

For the time being, the prototype, and the web based application force the user to select a 

robot from a menu of pre-created robots.  This removes the need for a complex UI that 

would allow them to design a robot online.   

2.3.2 User Designs an Environment 

The environment, or workcell of the robot is also something the user needs to define the 

geometry for.  Again, both loading from file or online description are supported.  In 

addition to specifying the environment one time, it is extremely likely that the user will 

want to modify the configuration of the environment during use of the system, meaning 

that the interface had to support moving and deleting obstacles already in existence.  

Supporting these features proved to be one of the more difficult user interface aspects of 

the system.   

 

Designing an environment for a robot is also a task that is in its infancy in the prototype 

and in the web based application.  Currently, several environments can be selected off a 

menu, while additional obstacles can be placed using the mouse. 

2.3.3 User Formulates a Planning Task 

Formulating a planning task is one of the simpler pieces of interaction a user has to 

perform.  All the planners currently in the system require the same information about 

their task – a start and a goal configuration.  Once a user has specified these two 

configurations, the planner can go to work.  The way in which a user would specify the 

start and goal configuration is very intuitive – sliders exist that alter the values of various 

joint variables, and a drop down list box allows you to select between different joints.  

The user receives immediate feedback as to what the changes in joint values are doing to 
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the robot by observing the robot moving in its environment onscreen.  For additional 

feedback, a checkbox indicates whether or not the current robot is in a collision 

configuration with its environment. 

 

As Figure 15 illustrates, a selector exists that allows users to pick which joint of the robot 

to move.  This selector enables a slider that allows individual joint values to be altered.  

The rendering window immediately reflects the changes the user makes.  Push buttons 

are present for selecting start and goal configurations.  
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Figure 15: Movement of Joints, and Selection of Start and Goal Configurations  

2.3.4 Choosing a Planner 

Choosing a planner and allowing it to perform a planning task are also fairly trivial for 

the user.  The pull down planner menu contains a list of planners from which the user can 

select, and the collision detector menu allows a choice of collision detection algorithms.  
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Some collision detection algorithms require additional parameters to tune their efficiency 

– when chosen, these will bring up an additional dialog box in which all necessary 

parameters can be specified. 

 

Figure 16: Pull Down Planner Menu Allows Choice of Different Planners  

Once a planner and a collision detector have been chosen, the user merely needs to press 

the plan button, and observe the results.  One drawback to the current system, however, is 

that once a planner has been engaged and has started its planning task, there is no way to 

abort without terminating the entire program.  This is because the entire planning 

operation is running in a single thread, and it does not check the system clock or any 

other signal to determine when to quit.  The lack of abort capability has the unfortunate 

consequence of causing you to have to shut the program down entirely if the combination 

of planner parameters and workcell configuration results in extremely long computation 

times.  This drawback needs to be further addressed when a more in depth user interface 

is developed.  There should be a method of terminating a planning task that is taking too 

long.  One common test case for this situation in a planner is the situation in which there 

is no valid path from start to goal.  In this case, the planner will often take maximal time 

while searching for a path because it doesn’t know when to quit. The user may have 

specified this environment by mistake, not realizing there was no path, and should be 

given the option of aborting.  

2.3.5 Evaluating the Results 

In order for the user to determine whether a given planner performed adequately on the 

robot and environment provided, there needs to be a mechanism for evaluating the 

resultant path.  A path can be visualized in two ways, the obvious way is to show an 

animation of the robot moving through the path, while the second way is to show some of 
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the robot’s intermediate positions as “shadow images” onscreen.  Figure 17 shows how 

shadow images appear in the prototype UI.  The number of shadows is user selectable. 

 

Figure 17: Illustration of Shadow Images  

 

Another aspect of evaluating the results of a planner is that the planner may not have 

been developed correctly, and may produce an invalid path; a path that in fact causes the 

robot to collide with some obstacles.  In this event, the system will show the planned path 

and animation, but during the animation if the robot is interfering with any obstacles, a 

message box will be shown to the user stating that the computed path does in fact graze 

an obstacle. 
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Chapter 3 System Code Design Overview 

Now that the functional description of the interactive system is complete, the design 

structure of the underlying code toolkit can be described with less confusion about what 

the individual components are meant to do.  Keep in mind that the interactive system 

described in section 2.3 is meant to function as both a demonstration of the MPK, and as 

a debugging tool.  The entire set of MPK functionality that has been implemented should 

be exercised by the interactive system. 

 

Conceptually, the MPK code is divided into several modules that interact heavily with 

one another.   

Module Function 

Universe Contains information about the robot, and environment. 

Collision Detector Acts as an intermediary between the Planner and the Universe.  

Responds to collision queries posed by the planner. 

Planner Contains the algorithm for path planning that will be implemented 

using the collision detector. 

Table 1: The Modules Used in the MPK 

This division of the system is not arbitrary, it corresponds with the notion that motion 

planning can be broken down into some sort of sampling of C-space, and performing a 

search on that space.  The planner mechanism effectively places the samples, collision 

detector acts as an evaluator, testing each sample for collision.  This breakdown is 

consistent with the formulation presented in[1]. 

 

A typical use case scenario would involve creating a Universe object, then populating it 

with robots and obstacles.  Typically, only one robot would exist at a time, but nothing 
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from the universe aspect of the system prevents the existence of multiple robots1.  A 

collision detection object would then be instantiated that used this universe, and 

performed whatever internal optimizations it needed to make collision checking faster.  

Once a collision detector exists, a planner can subsequently be instantiated that uses that 

collision detector, takes a start and goal configuration, and produces a path.  Figure 18 

illustrates the use case scenario outlined above. 

Universe
(from Universe)

CollisionDetectorBase
(from CollisionDetectors)

Created From

PlannerBase
(from Planners)

PathBase
(from Paths)

Poses Queries Of

Produces

 

Figure 18: Use Case Scenario for a Typical Planning Task 

The planner interface to the environment is provided via a collision detection module.  

This interface allows the planner to access information about the number of degrees of 

freedom that the robot permits, as well as information regarding how the robot and the 

environment interact, generally termed a collision query.  Collision queries can be widely 

different depending on the particular needs of a planner, however they generally are not 

overly complex.  Several queries that I have already included are 

 

• How many degrees of freedom are there? 

• Point probe collision query 

• Line probe collision query (two types) 

 

With the point probe query, the planner needs to know whether, in a given configuration, 

the robot is in interference with itself or the environment.  Is it in a collision state?  This 

                                                 
1 Of course if no planners exist for multiple robots, then having them exist is almost useless.  Developing 

these planners requires a lot of additional thought. 



 13

type of query is termed a point probe query because it corresponds to testing a single 

point in C-space.  A second type of query is that of the line probe query.  Given two 

configurations of the robot, is the path between them free of collisions?  This query type 

tests a line segment in C-space, hence the terminology describing it as a linear query. 

 

Collision detection is a huge field in itself, and the body of pre-existing work is very 

large.  There is no need for us to re-invent the wheel.  The most desirable manner of 

supporting collision detection is to permit as many “off the shelf” packages to be plugged 

in as possible, and allow the programmer or the user of the interactive system to choose 

the one they feel is appropriate.  In fact, the MPK can be used to evaluate the utility of 

different collision detection schemes in much the same way as it evaluates the 

performance of motion planning algorithms. 

 

The problem with allowing multiple off-the-shelf collision detection code libraries to be 

used with the MPK is that they usually have different interfaces.  Distilling the 

information from different collision detection modules is a problem in itself, so to 

simplify the task of the planner developer, a standard method of interface to collision 

detection libraries was settled upon.  Essentially, for each distinct interface to a collision 

detection library that is possible, an interface class is written.  An interface is an abstract 

class that cannot be instantiated, but exposes several functions that must be implemented 

in any class that inherits from it.  This mechanism serves to isolate the planner from the 

implementation of the collision detection library.  The planner only uses the interface 

class, thus any class that inherits from that interface could also be used by that planner. 
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Interface1 Interface2 Interface3

Icollide Vcollide

Planners

 

Figure 19: Relationship Between Planners, Interfaces and Collision Detectors  

In the diagram shown above, a planner that requires interface1 can use either the Icollide 

or the Vcollide libraries, while a planner that needs interface2 could only use Vcollide.  A 

planner requiring interface3 would be unable to use either of the collision detection 

libraries shown.  The low-level collision detection objects shown in the diagram represent 

wrapper classes I have created for each of the third party libraries. 

 

When off the shelf collision detection libraries are identified and added to the MPK, they 

should be made into classes.  Whatever interfaces the library can support should be made 

parents of the newly created object; i.e. the new class should inherit from them.  The 

functions that the interfaces require must then be written within the wrapper class created 

for the library, so that it conforms to the interface.  Now the new class is ready for use.  

Authors of planners are isolated from this mechanism because they can write the planner 

so that it uses one or more of the abstract interfaces.  When the planner object is later 

instantiated, it must be provided a collision detector object, but if the object does not 

inherit from the required interfaces, the planner object will reject it.  Because of multiple 

inheritance, a collision detection object can potentially support many different interfaces, 

but the author of the planner only needs to know about the existence of those that are 

required by that particular planner. 
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3.1 Basic Types of Mathematical Entities 

Before I discuss the operation of the universe, collision detectors and other specific code 

modules, I begin with an explanation of the basic types and libraries that had to be 

created as a foundation for the MPK. 

3.1.1 3D Vectors 

In a system that will make large scale use of computational geometry and manipulations 

in a 3D scene, one of the most fundamental primitive types is that of the Vector.  This 

class was written from scratch rather than being culled from some other library so that I 

could maintain complete control and understanding of the workings of this object.   

Vector4

elements : double[ 4 ] 

(from math)

 

Figure 20: Vector4 Class 

The Vector4 class represents a 3D vector using homogenous coordinates[4].  This 

representation permits me to represent vectors with infinite length easily, and it fits well 

with homogenous matrices, which are used for rigid body transforms and will be 

discussed in section 3.1.3.  Because a vector is such a basic type that most, if not all 

programmers of the system are likely to use, many of the common operations performed 

on a vector are provided in the form of overloaded (overridden) operators or member 

functions. 
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Member function name Functionality 
Operator[] Used to index the contents of the vector.  Only indexes from 0 

to 2 are valid, because the non-homogenous values are 

returned. 

Operator+ Vector addition 

Operator- Vector subtraction 

Operator* Scalar multiplication.  This operator permits function calls of 

the form vector * 5.0 ; 

Operator== Equality operator.  Compares two vectors to determine if they 

are equal. 

Magnitude Returns the length of the vector 

MagSquared Returns the square of the length of the vector. The relatively 

expensive square root calculation can be avoided in many 

algorithms by comparing the MagSquared of vectors rather 

than their magnitudes. 

Dot Dot product of two vectors 

Cross Cross Product of two vectors 

Projection Projection of one vector onto another 

Normalize Returns a vector in the same direction, but with unity length. 

 

I regret the name chosen for this object within the MPK code.  Vector4 does not 

accurately describe the function of this class.  In the spirit of writing “self documenting 

code”, in which class names should be very descriptive of the function of that class, this 

object should be called Vector3H.  Where the H indicates the vector is stored using 

homogenous coordinates. 

3.1.2 N Dimensional Vectors 

Certain constructs in the MPK system, most importantly points in configuration space, 

are best represented in terms of an N dimensional vector.  C-space may be of arbitrary 

dimensionality; so it is necessary to permit the structure that contains a point in C-space 

to contain any number of elements. 
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VectorN

length : unsigned int = 0
elements : std::vector< double >

(from math)

 

Figure 21: N Dimensional Vector Class 

As Figure 21 indicates, the VectorN class contains two data members, its length, and a 

Standard Template Library (STL)[5] structure containing an array of doubles.  In STL 

notation, a vector represents a dynamically resizable array of elements; in this case, 

doubles.  The STL structure does not provide operations on the vector that resemble 

mathematical functions.  These were written separately.  Also of note is the fact that 

unlike Vector4, VectorN is not specified in homogenous coordinates during any of the 

operators below.  This fact would be obvious had I properly named the Vector4 class 

Vector3H.  The absence of the H in the VectorN class name would serve to indicate that 

homogenous coordinates were not used. 

 

Member function name Functionality 
Length Used to determine the current size of the vector 

SetLength Alters the length of the current vector 

Operator[] Used to index the contents of the vector.  Only indexes from 0 

to Length() - 1 are valid 

Operator+ Vector addition 

Operator- Vector subtraction 

Operator* Scalar Multiplication 

Operator/ Scalar Division 

Operator== Equality operator – used to determine if two VectorNs are 

equivalent 

Operator!= Non-Equality operator returns the boolean complement of 

operator== 

3.1.3 4x4 Matrices 

In addition to Vectors in 3d, many geometrical operations require the presence of 4x4 

homogenous matrices[4].  As such, a 4x4 matrix object is included as part of the MPK. 
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Matrix4x4

values : double[4][4]

(from geometry)

 

Figure 22: 4x4 Matrix Object 

The Matrix4x4 class represents an arbitrary matrix containing 16 elements in 4 rows and 

4 columns.  It is not restricted to being a rigid body transformation, so care must be taken 

when assigning values to the matrix if the programmer intends it to maintain a structure 

that can be interpreted as a rigid body transform.  Several access functions are provided 

to make maintaining rigid body transforms easier.  

Member function name Functionality 
Operator* Matrix x Matrix multiplication 

Operator* Matrix x Vector multiplication 

Operator() Used to index the contents of the vector.  Used with two 

parameters – matrix( 0, 2 ) would index the second element of 

the zeroth row of the matrix.  Keep in mind that bot rows and 

columns are enumerated starting with 0.   

Inverse Inverts the 4x4 matrix.  Inverse can be an expensive operation 

if called often. 

Scale( factor ) Modifies the current matrix by a postmultiplying it by a 4x4 

scaling matrix  

Translate( vector ) Modifies the current matrix by postmultiplying it by a 4x4 

translation matrix that translates by the vector passed as a 

parameter.  This operation maintains a rigid body transform 

Rotate( theta, vector ) Modifies the current matrix by postmultiplying it by a 4x4 

translation matrix composed by rotating theta degrees around 

the vector passed as a parameter.  This operation maintains a 

rigid body transform. 
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3.2 Universe 

The universe object is the object that the system must first populate before any other 

tasks can be accomplished.  It will typically contain one or more robots and the obstacles 

that represent the environment. 

 

In order for the universe to store both robots and obstacles, these two types of object are 

derived from the same abstract base class, entity. 

ObjectBase
(from geometry)

Entity
(from Universe)

RobotBase
(from robots)

 

Figure 23: Both Robots and Obstacles Derive From Class Entity 

This being said, there is no real distinction, as far as the universe is concerned, between a 

robot and an obstacle.  All items that can be contained in the universe are referred to as 

entities, and are stored in the same list structure. 

Universe
(from Universe)

Entity
(from Universe)

#entities

0..*0..*  

Figure 24: A Universe Contains Many Entities 

The entity class exposes the following functions 

Member function name Functionality 
Clone Correctly duplicates the entity that is pointed to by a 

pointer in a polymorphic manner. 

IsInterfering Determines if two entities are interfering with one 

another 

SetBaseFrame Sets the frame that this entity is defined with respect to 

SetFrameManager Sets the frame manager that this entity should be using to 

access frames. 
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access frames. 

GetTransform Gets that transform of the frame that this entity is defined 

in relative to the base frame. 

CanCheckInterference Determines whether or not an interference check is 

allowed between two entities. 

BaseFrame Determines the base frame that this entity is defined with 

respect to 

 

Because the universe contains a list of pointers to entities, any object that inherits from 

this class can exist within the universe without adverse consequences.  Later, it will be 

demonstrated that constructs such as open chain robots as well as polyhedral meshes and 

other objects derive from entities. 

3.3 Universe - Kinematics Module  

The universe must also contain a kinematic description of the entities contained within.  

This description is necessary so that users can specify the state of the universe using joint 

variable notation. 

3.3.1 Frames 

The kinematic description revolves around the concept of frames and links.  A frame is 

defined as would be expected in a robotic simulation program; it represents a 4x4 rigid 

body transformation matrix.  

Matrix4x4
(from geometry)

Frame
(from geometry)

 

Figure 25: Frame Objects Derive From 4x4 Matrices 
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Because it derives from a generic 4x4 matrix, the frame object has many member 

functions overridden.  Operations such as matrix multiplication, and inversion already 

exist for this class. 

 

In addition to the concept that a frame represents a transformation matrix, is the notion 

that a frame is always defined relative to some other frame, its base frame.  In order to 

implement this concept, each frame contains an additional field representing its base 

frame.   

Frame

baseFrame : unsigned int

(from geometry)

 

Figure 26: Frame Class Illustrating baseframe Attribute 

The baseframe reference is defined to be an unsigned integer rather than an explicit 

pointer to another frame structure.  Essentially the way I wrote this amounts to rewriting 

of pointer mechanism of C++.  I implemented it that way for several reasons.  First, it can 

be difficult to maintain a tree structure using pointer memory management.  Second, an 

additional structure the Frame Manager; to be discussed subsequently, exists that 

contains all the frames in the system and I wanted this structure to handle all the memory 

management for the frames.  If pointers were maintained to these structures, copying 

frames while maintaining memory integrity becomes difficult.  It also becomes 

complicated to index specific frames in the tree without actually traversing the tree every 

time a frame is required.  The baseFrame number is an index into this frame manager.  

Thirdly, using an unsigned integer to represent the number of the frame makes more 

intuitive sense to a programmer using the system.  Debugging is easier if the base frame 

of frame 2 is listed as ‘1’ rather than ‘0x00004FEC’. 

3.3.2 Links 

Robotic kinematics necessitates the concept of links.  In the MPK software system, these 

are objects that encapsulate a mathematical function describing how a frame is altered by 

changing the value of a joint variable.  Usually links are described using Denavit – 

Hartenberg notation, although in the future they may not always be. 
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A link, like a frame, must be defined in relation to some pre-existing frame.  It also must 

control the motion of one or more frames itself.  Since it encapsulates a function that 

maps a joint variable q to a frame, it also has a range over which the input variable is 

valid, typically referred to as the joint limits of a particular joint.  A special case exists for 

some classes of joint, particularly revolute joints, wherein no joint limits exist.  These 

joints can rotate infinitely in one or more directions.  To accommodate this case, an 

additional flag must be present to indicate that the joint variables “wrap around”. 

 

In the MPK system, a link is used to completely describe the structure of one link of a 

robot.  It contains a kinematic description as well as the geometry of that link. 

+objects

ObjectBase
(from geometry)

LinkBase
(from Kinematics)

0..*0..*  

Figure 27: Link Object Contains Geometry Objects2 

As described, a link object completely encapsulates the motion of one or more frames, 

corresponding to one or more joint variables.  Each link object contains member 

functions for setting joint variables.  Once the joint variable has been set, the frames that 

depend on that joint variable can be updated to reflect this new value by calling the 

UpdateFrames() method. 

 

Member function name Functionality 
SetBaseFrame( unsigned int ) Specify the frame that is the parent for this link.  All links 

must be defined within a pre-existing frame. 

UpdateFrames() All the frames that this link controls are updated to reflect 

new joint values 

BaseFrameNum() Find out the frame that is the parent of this link 

Clone() Duplicates the link based on a pointer to that link 

                                                 
2 The 0..* indicates that the LinkBase can contain from 0 to infinite numbers of objects 
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SetFrameManager() Specifies the frame manager that handles memory 

management for the frames this link controls. 

SetJointVariable( double ) Alters the joint variable that drives this link 

JointMax( double ) 

JointMin( double ) 

Set the max and min values for the joint variable.   

JointWraps( bool ) Specifies whether or not the joint can wrap around its 

joint limits. For example, a revolute joint that can spin an 

infinite number of times. 

DoesLinkControlFrame( int) Determines whether or not a link controls the motion of a 

specific frame 

Serialize() Allows the data in the structure to be written to file or to 

a stream. 

DeSerialize() Reads in the data for the structure from a file 

DeSerializeAbstract() Reads in the data for the link structure correctly even if 

the data is stored for one of the derived classes of 

LinkBase 

 

3.3.3 Links Defined Using Denavit Hartenberg Parameters 

The class structure for links is meant only as an abstract base class that other classes will 

inherit from.  An abstract link is neither intended to be instantiated, nor is instantiation 

possible.  In order to use a link, one must choose a particular variety of link, and 

instantiate that instead.  Since Denavit Hartenberg notation is very common, one 

derivative of the link base class is that of a Denavit Hartenberg (DH) link.  
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DH_Link
(from Kinematics)

LinkBase
(from Kinematics)

 

Figure 28: DH Link Object Inherits From Link Base Class 

In C++, and most other object oriented languages, if you want to store a collection of 

objects of mixed type, they must all derive from one common base type.  In the MPK, a 

robot is made up of a collection of links, which can potentially be of several different 

types.  The reason that a DH_Link must inherit from LinkBase is so that all links in a 

robot can be stored in one simple structure.  LinkBase is the common base type for all 

link classes. 

 

The DH Link structure has additional data members that are specific to DH notation.  

Floating point values representing the A, D, θ and α parameters are required.  In addition 

to these numeric parameters for DH links, one of the parameters is controlled by the joint 

variable.  In order to make this control as transparent as possible, yet at the same time 

efficient, this is accomplished by including a Q data member that is a pointer to one of 

the floating point DH parameters.  Thus when the user changes the joint variable, they 

change the value pointed to by the Q pointer.  The concept of the Q pointer allows one 

DH link structure to represent prismatic and revolute joints without loss of generality. 

 

In actual fact, a programmer using the system should be completely unaware of the 

existence of the Q pointer.  It will be hidden by the access functions, particularly 

SetControllingParameter() and SetJointVariable().  SetControllingParameter() is used to 

specify which of the DH parameters is controlled by the joint variable.  The 

SetJointVariable() function performs the task of updating the joint variable that controls 
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this link.  Specifying a DH link that uses the theta parameter to control its motion would 

look something like: 

 

DH_Link link ; 

Link.SetControllingParameter( DH_THETA ) ; 

Link.SetJointVariable( 30.0 ) ; 

 

Adjusting the joint variables is not immediately reflected in an adjustment of the frame 

that this link controls.  Modification of the frame values is triggered only when the 

UpdateFrames() method is called.  This member function allows the programmer to 

specify precisely when the update operation will be performed.  In this case it seems like 

a bit of extra work for the programmer, the UpdateFrames() function is fast, and might as 

well be called every time a joint variable changes.  However, for different link types, the 

function may be significantly more computationally expensive, and in such cases, it is 

better to leave the timing of when the function will be called in the hands of the 

programmer. 

 

A Denavit Hartenberg link controls the position of one frame in the frame manager.  The 

formula used to determine the position of the frame is included as part of the Appendix. 

 

The DH_Link class contains many member functions, most of which are directly 

inherited from the base class LinkBase.  Many of these inherited functions are overriden 

in the derived class, and must be implemented in a manner specific to the DH notation.  

The functionality, however, is the same as that indicated in the base class.  Additional 

member functions are outlined below. 
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Member function name Functionality 
SetAlpha( double ) 

SetA( double ) 

SetD( double ) 

SetTheta( double ) 

Specify the Denavit Hartenberg parameters for the joint 

SetControllingParameter() Specify which of the parameters is connected to the joint 

value. 

SetJointVariable Alter the parameter that is connected to the joint variable 

FrameNum() Since a DH link can only control one frame, it is easier to 

call this function than the DoesLinkControlFrame() function 

of the parent class. 

AddObject() Adds geometry to the frame that this link controls. 

 

3.3.4 Frame Manager 

Both the Frame class and the Link class above depend on the presence of a frame 

manager object.  This object exists as a part of a universe to keep track of a hierarchy of 

frames.  Each universe and each collision detection module will have one frame manager 

apiece.  The frame manager also handles memory allocation for any frames that are 

referenced in one particular universe.  It does this allocation by storing all the frames in a 

dynamic array. 

Frame
(from geometry)

FrameManager
(from Kinematics)

Frame
(from geometry)

+allFrames

0..*0..*

+allWorld

0..*0..*

 

Figure 29: Frame Manager Stores all the Frames 
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The allFrames member shown in Figure 29 represents the storage space for each 

individual transformation frame.  Each of the frames stored in allFrames depends on a 

link in order to be updated, and represents a transformation relative to the base frame of 

that particular frame.   

 

In order to speed up certain computations, an additional array of frames is maintained by 

the frameManager.  The allWorld array represents transformations relative to the world 

frame, frame 0.  The primary reason this array is maintained is that matrix multiplication 

is an expensive operation if it needs to be done many times.  One common operation is 

computing the transformation matrix relating two frames.  During this process, the 

transformations between each of the frames in question and a common base frame are 

computed.  Because this function is called for in a variety of situations, often without a 

change in joint variables, it would be beneficial to retain some of the intermediate 

variables that were computed, which is exactly what maintaining the allWorld array does. 

 

Methods that the frame manager supports were designed so that the programmer using 

the MPK can access all the necessary information about a given frame easily.  The 

methods include those to add additional frames, determine the contents of a frame, 

determine the relative transformation matrix relating two frames, etc. 

 

Member function name Functionality 
AddFrame() Creates a new frame, allocates memory for it, and returns an 

integer indicating its frame number. Similar like malloc() or 

new() in C/C++ 

GetNumberOfFrames() Returns the total number of frames controlled by this frame 

manager. 

Operator[ int ] Returns a specific frame. 

ValidateFrame( int ) Checks the parent frame of the specified frame to make sure 

there are no circular references.  Frames that are not defined 

relative to the base frame, frame 0  

GetFrame( int ) Returns a copy of the frame indicated 
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GetFrameReference( int ) Returns a pointer to the frame indicated 

GetTransformRelative( 

int, int ) 

Returns the transformation matrix relating two frames. 

BaseFrame( int ) Returns the base frame of the frame in question. 

SetBaseFrame( int, int ) Alters the base frame of the frame in question. 

MarkFrameChanged( int 

) 

Mark a frame as having changed, so that all the cached 

frames that depend on it will be recomputed. 

  

 

3.4 Geometry Module 

In order to maintain a description of the robot and the environment, geometrical data 

structures and functions are included in the MPK.  Some of the objects in this module 

derive from entity and as such can be added to the universe as obstacles or added to a link 

as link geometry.  Other objects, like VRMLreader are access objects used to access files 

and load geometry from this source. 

3.4.1 ObjectBase 

All the geometrical objects that exist within the confines of the MPK derive from a 

common base class, that of ObjectBase.  This class in turn inherits from Entity.   
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ObjectBase
(from geometry)

Entity
(from Universe)

MPK_Sphere
(from geometry)

Segment
(from geometry)

Mesh
(from geometry)

ObjectGroup
(from geometry)

 

Figure 30: All Geometrical Objects Derive from ObjectBase 

 

The ObjectBase class enforces several operations on all the geometric objects that derive 

from it.  In addition, it ensures that all objects will contain a Frame data member.  This 

frame represents the offset of the geometric object in the frame in which it resides.  The 

purpose of this additional frame is that most geometry will not be defined so that its 

origin matches the origin of a frame that a link controls.  This will be especially true of 

geometry loaded from a preexisting file.  For example, Denavit Hartenberg notation 

specifies that the axis of joint motion coincides with the Z axis of the frame.  However, 

what if the geometry file has interchanged the Z and the X axis?  This “offset frame” can 

be used to correct this problem. 

ObjectBase
(from geometry)

Frame
(from geometry)

+theFrame

1  

Figure 31: Each Geometric Object Contains an Offset Frame 

During all computations involving a geometry object, the offset frame must be 

specifically taken into account.  The offset frame is taken into account by default in all 
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computations that are provided in the MPK, but future extensions must keep this property 

in mind. 

 

The fact that the ObjectBase class inherits from the Entity class means that it also inherits 

properties of the Entity class and abstract functions that must be written.  Some of these 

inherited properties and functions bear further explanation.  The Clone member function 

is extremely vital to the operation of the MPK as a system.  It makes dynamic object 

polymorphism possible; enabling us to store lists of different objects, all derived from the 

same base class without memory allocation problems.  The Clone function is a virtual 

function.  What this means is that when you have an object inheritance hierarchy, and 

you have a pointer to an object that resides at some level of the hierarchy, there will be no 

ambiguity when calling member functions of this object.  Virtual functions in C++ 

provide a built in mechanism for Run Time Type Information (RTTI).  What occurs in 

this instance is that programmers often have collections of pointers to objects.  This 

collection may be a linked list, or array of pointers to objects in an inheritance tree.  The 

programmer does not know exactly what the type of the pointer may be.  For discussion, 

let’s say that the pointer could point to an object of the grandparent class, the parent class 

or the child class.  If the grandparent class contains a certain member function, then so do 

the classes that derive from it, so this function can be called on any of the objects in the 

inheritance tree.  However, if that function has been overridden in either of the child 

classes, when the function is called, you will get unexpected results, because the function 

that is executed will be the one appropriate for the grandparent, not the parent or the 

child. 

 

Virtual functions allow function ambiguity to be resolved at runtime.  An additional data 

member indicates what the actual type of the pointer is, and the correct member functions 

are called, without the programmer having to do any additional work.  The drawback to 

writing code in this way is that every member function call has the additional overhead of 

one pointer dereferencing operation.  Usually this extra overhead is a small price to pay 

for the software engineering power you receive in return. 
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The Clone function provides a polymorphic way of duplicating a pointer to an object.  It 

will be used in occasions where you have a pointer to an object that derives from Entity, 

but you are unsure of the precise type of the object.  There are ways of determining the 

type, but it is not necessary to do so in this instance.  If you had a pointer to an object of 

known type and wanted to duplicate it, it would be a simple matter of writing 

 

Entity* newEntity = new Entity( oldEntity ) ;  

 

However, we don’t know the type of the pointer in here, so we cannot use the above 
syntax.  Instead, we write: 
 

Entity* newEntity = oldEntity->Clone() ; 

 

This function performs the task of memory allocation, invoking the C++ operator new on 

its own data type.  Since the function is virtual, we can be assured that the correct amount 

of memory is allocated, and the object’s data is copied correctly.  Since memory has been 

allocated dynamically, care must be taken to ensure it is deleted properly.  Freeing the 

memory is the responsibility of the code that invokes the Clone function.  Clone must be 

used in much the same way as C++/C functions new or malloc would be used in C++/C.  

The memory must be deleted when no longer required. 

 

Additional member functions defined abstractly at the ObjectBase level but implemented 

by each of the derived classes are the CanCheckInterference and IsInterfering member 

function. CanCheckInterference is used in error trapping to determine if collision 

detection between two geometrical objects can be performed.  Object vs. Object collision 

detection is implemented via member function of the individual objects.  If a programmer 

has a polyhedral mesh object and a sphere object and wishes to determine if they 

intersect, a separate collision detection object does not first have to be created.  The 

member function: 
objectA->IsInterfering( objectB ) ; 

can be called.  However, this function must be polymorphic, determining the type of 

objectB and calling the correct code at runtime.  Unfortunately, as the MPK system 

grows, not all combinations of objects will have interference code that is capable of 
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determining whether or not the pair intersects.  To determine whether or not an 

intersection test exists for a pair of objects, the additional member function 
objectA->CanCheckInterference( objectB ) ; 

should be called. 

 

Member function name Functionality 
IsInterfering Used to perform a one on one interference check with 

another object. 

GetFrame Returns the offset frame associated with this object 

SetFrame Sets the offset frame associated with this object 

  

 

The current version of the MPK supports the following object types 

1. Polyhedral meshes 

2. Spheres 

3. Line segments 

4. Groups of objects 

3.4.2 Polyhedral Meshes 

Polyhedral meshes are the most important geometrical data type in the MPK system.  

Most robots that are simulated in other systems exist in a polyhedral mesh format.  Since 

one of the underlying tenets of the MPK system is that researchers be able to port their 

existing problems to our system easily, polyhedral meshes were included as a primary 

data type.  Other reasons for including polyhedral meshes are their flexibility, and general 

ease of use.  Most preexisting collision detection libraries presume the polyhedral meshes 

to be the only data type that is being used. 

 

A mesh is a surface representation of a polyhedral object.  It is a set of connected 

polygonal faces that form a surface.  A mesh is a surface model only, however.  It does 

not contain inside/outside information about the object that it defines, only information 

about the surface.  It also does not have to be a closed object.  A single triangle is a valid, 
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albeit very simple, mesh.  This mesh has no interior or exterior, simply a description of a 

surface in three space. 

 

Like all geometric objects in the system, polyhedral meshes derive from the ObjectBase 

class. 

ObjectBase
(from geometry)

Mesh
(from geometry)

 

Figure 32: Mesh Object Inherits From Object Base 

 

In addition to the basic data members provided through inheritance, the mesh also 

contains several other data members.  

Facet
(from geometry)

Mesh
(from geometry)

Vector4
(from math)

+facets

0..*0..*

+vertexes

0..*0..*

 

Figure 33: Mesh Objects Contain Vertex Points, and Facet Lists 

Each Mesh object maintains an array of vertex points.  These represent the positions in 

3D space of the vertexes of the mesh.  By itself, verticies only provide enough 

information to describe the convex hull of the mesh.  We also need data representing the 

manner in which the verticies are connected into facets.  This data is stored in a separate 

array of Facet objects.  

Facet

vertexNumbers : std::vector< unsigned int>
direction : int

(from geometry)
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Figure 34: Facet Object 

The facet object contains an array of integer values representing vertex numbers, and a 

direction flag indicating whether the vertexes are intended to be enumerated in clockwise 

or counterclockwise order.  The vertex numbers are meant to represent indexes into the 

vertex array. 

 

The data representation I have chosen for the Mesh object was not selected arbitrarily.  It 

is a format widely used to store information about mesh type geometry.  It shares a high 

degree of similarity with the format used to store mesh geometry in the Virtual Reality 

Markup Language 1.0 (VRML 1.0) file format.  It should be stressed, however, that a 

data structure and a file format are very different concepts not to be confused with one 

another.  Just because this representation is similar in description to VRML, it is not 

“using VRML” or “tied in to VRML”. 

 

The structure of the mesh object should make it clear that although polyhedral solids can 

be stored in a mesh format it will be as a surface model only.  There are no checks in 

place for the validity of the polyhedral object.  It can self intersect, it can be closed or 

unclosed, etc. Polyhedral objects are difficult to deal with at the best of times.  They are 

usually not generated by hand and when generated by third party tools, they are usually 

error free.   

 

Polyhedral meshes can be used to represent a closed region of space.  If a mesh is to be 

used in this instance, there may exist a need to solve the point containment problem, the 

problem of deciding whether or not a given point is inside or outside a mesh.  In this case, 

there are algorithms that can be applied that attempt to solve this problem, provided that 

the mesh obeys certain constraints.  The mesh must be completely closed, and the 

orientation of vertexes on each of the faces must adhere to a consistent organizational 

scheme.  If a need is discovered to solve the point containment problem, the next version 

of the MPK will include meshes that represent solid objects in this manner.   
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Member functions of the Mesh class exist to support constructing a mesh from the ground 

up.  AddVertex and AddFacet can be used to incrementally construct the mesh.  As stated 

above, there are no checks in place to verify the validity of a mesh, thus vertexes and 

facets can be added in arbitrary order.  Ease of construction of mesh objects is a distinct 

advantage as compared to using proper solid models in which incremental construction is 

significantly more difficult, often requiring the use of difficult Euler operators.  Euler 

operators allow solid models to be constructed; however their use is extremely 

non-intuitive to most users.  The order of adding vertexes and faces is extremely vital 

when using Euler operators, in stark contrast to the Mesh representation we are using. 

 

Another Mesh object member function is the TransformVerticies method.  This function 

alters the mesh by multiplying the position of each point by a 4x4 transformation matrix, 

enabling the user to rotate, scale and translate the Mesh without altering the frame in 

which it resides.  TransformVerticies is an expensive operation because it must be applied 

to each of the vertexes in the Mesh, but it can save significant time if it allows us to avoid 

matrix multiplications later, during collision detection. 

 

As mentioned above, each geometric object in the MPK system is responsible for being 

able to detect interferences between itself and other geometrical objects, meaning that for 

every pair of objects for which an intersection test exists, one of the pair must contain the 

member function for that interference test.  However, only one of the objects needs to 

have the routine, not both.  Also, if an interference test does not exist, the program should 

fail gracefully.  In order to accomplish this error trapping, the member function 

entitya.CanCheckInterference( entityb ) exists.  This function takes as a parameter a 

pointer to a second entity.  If a collision routine exists for this pair of objects, then the 

function returns true, otherwise it returns false.  This routine can be used as a method of 

error trapping while debugging programs. 

 

For polyhedral meshes, at present, the only interference tests that exist are between one 

mesh, and another mesh.  Interference tests with spheres, line segments, etc. are not 

permitted at this time.  These will be added in subsequent upgrades of the toolkit.  These 
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tests are missing because at present, to perform the low level interference checking for 

meshes, the Vcollide library is employed and it does not support anything but mesh-mesh 

tests. 

One of the last member functions present in the polyhedral mesh class is the Splice() 

function.  This function merges two meshes together.  It is a very rudimentary algorithm 

that simply appends the vertex lists, and adjusts the facet enumeration numbers of the 

meshes accordingly, but it will speed up collision detection routines if used.  If an object 

is represented by several meshes, its collision detection will be faster if those meshes are 

first spliced together (a onetime cost) then sent to the collision detection routines. 

 

Member function name Functionality 
AddVertex Adds a vertex to a mesh 

AddFacet Adds a facet to a mesh 

ReadFromIcollideFile Deserializes a mesh from an Icollide file 

SetCoordinates Alters the vertex list to match a new list passed as a 

parameter. 

TransformVerticies Transforms all the vertices by the matrix passed as a 

parameter.  Can be used to rotate, scale, or translate the 

geometry. 

Splice Joins two meshes together to form one single structure.  

Joining is accomplished simply by appending vertices and 

facet information.  

  

 

3.4.3 Spheres 

The second primitive resident in the MPK geometry module is that of the sphere.  

Denoted MPK_Sphere due to naming conflicts with the Vcollide collision detection 

library, the sphere is the most efficient geometry representation in the MPK system.  

Sphere – Sphere collision detection tests, for example, are the fastest interference tests; 

faster even than tests of axis aligned bounding boxes like those used by Vcollide. 
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#positionMPK_Sphere
(from geometry)

radius : double

Vector4
(from math)

11
 

Figure 35: Sphere Object Represents a Sphere with Position and Radius  

The sphere object is represented using a Vector for the position of the sphere, and a 

floating point value for the radius.  The inclusion of the position vector as part of the 

sphere is not entirely necessary, given that each entity in the MPK system exists inside a 

moving frame controlled by a robot’s joint, and all entities within one of these frames 

have an “offset” frame.  The position vector could simply be included in this offset 

frame.  Spheres however do not require all the information about the offset frame to 

describe their position.  Only the translation portion is valid because spheres are 

rotationally invariant.  To speed up interference testing, alterations of the sphere’s offset 

frame are directly translated into alterations in the position vector, and the offset frame 

always remains the identity matrix, allowing the matrix/vector multiplication that moves 

the sphere to be performed once, rather than each time an interference test is performed. 

 

Little more need be said of the sphere.  Its member functions are exceedingly simple.  

Accessor methods for getting and setting radius values and positions, along with the 

requisite interference checking routines as described in section 3.4.2.  The only collision 

detection routine contained within the sphere object is the sphere vs. sphere intersection 

test.  All other intersection tests involving spheres are owned by different objects. 

 

Member function name Functionality 
Radius Determine what the radius of the sphere is 

Position Determine the position of the center of the sphere 

SetRadius Set the radius 

SetPosition Set the position of the sphere 
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3.4.4 Line Segment 

The line segment primitive was added to permit the construction of extremely simple 

robotic links.  That being a link composed only of a line segment joining its endpoints.  

The line segment class is very simple, as Figure 36 illustrates 

Segment
(from geometry)

Vector4
(from math)

Vector4
(from math)

#start

11

#end

11

 

Figure 36: Line Segment Object 

The segment object derives from the entity class, and contains two vectors.  One 

represents the start of the line segment, the other the end.  This representation is slightly 

misleading because a line segment is not a directed entity.  Start and end have no 

meaning other than to distinguish the two points on the segment. 

 

Like the sphere object, the line segment’s member functions are very simple.  Only 

accessor functions and interference checking functions have been written for the segment 

object.  This time, however, things get a little more complex.  In addition to the segment 

vs. segment interference test, this class contains a segment vs. sphere interference test.   

 

It is important to note that there are numerical issues surrounding the segment class. An 

ideal line segment has zero width.  In our system, a line segment is a segment connecting 

two points in 3D space.  Since the endpoints of the segment are used to define it, any 

modifications of the end points also modify the line.  Problems arise during interference 

testing.  Two lines intersect one another only if all four endpoints lie in the same plane.  

This concept is simple, but when the coordinates of the endpoints are represented with a 

finite precision on computer, 4 point coplanarity almost never occurs, meaning that the 

interference test between two segments almost never returns a true value indicating 

interference.  This problem can be solved to some extent by utilizing a numeric constant ε 
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for mathematical calculations where any number with magnitude less than ε is treated as 

zero.  The ε solution would permit segments that very nearly intersect to be treated as 

intersecting.  This capability is not present in the MPK, but can be added in subsequent 

versions. 

 

Another note when using segments is that many motion planning algorithms discretely 

sample C-space.  Adjacent samples are tested for interferences, and if none are found, it 

is assumed that the path between the two is also collision free.  This assumption falls 

apart when segments are used.  For example, two skew segments are separated by 

distance d.  Let’s make d equivalent to the joint variable being modified by the planner.  

The planner wants to test if the path from d = -1 to d = 1 is collision free.  Suppose, we 

know that this path is not free, and collision occurs when d=0.  However if the planner 

discretizes the path into 4 points, d=[-1.0, -0.33, 0.33, 1.0], and tests each of them, no 

interferences are will be found.  In fact, unless the planner happens to perform a 

discretization in which d=0 is one of the points tested, it will never encounter an 

interference.  To some extent, the ε solution presented above will also solve this problem. 

 

For the two reasons mentioned above, segment vs. segment interference tests in 3D are 

unreliable, and should not be expected to produce good interference results.  Line 

segments should not be used to construct non planar robots because links constructed of 

segments would not produce interferences with other links constructed out of segments 

that were not in the same plane.   

 

Interference tests in which the two segments are in the same plane are a different story.  

In this case, the interference test will produce valid interferences, and the sampling 

problem is eliminated in all cases except when the segments are precisely parallel 

meaning that if the robot being constructed is planar, segments are still a good choice to 

represent the links. 

 

Although segment vs. segment interference tests in 3D are unreliable, that does not mean 

that line segments should not be used in a 3d robot description.  Interference tests 
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between segments and other primitives do not share the problems described above.  For 

example, the segment vs. sphere calculation that resides as a member of the segment 

object is numerically robust.  It produces correct results in all cases with no instabilities 

or problems of any sort. 

 

Member function name Functionality 
SetStart Specify the start and the end points of the line segment 

SetEnd  

  

 

3.4.5 Groups 

One convenient feature of many 3D scene descriptions is the concept of grouped objects.  

This function is often found in scene description languages such as VRML, and it allows 

different primitives to be grouped together and treated as a single entity.  This operation 

corresponds to the constructive solid geometry (CSG) union operation. 

 

In keeping with this tradition, an ObjectGroup object is included in the MPK system.  

This class, like all the primitives, derives directly from the ObjectBase class; however, a 

group object has another relationship with ObjectBase.  Groups also contain an array of 

ObjectBase pointers, providing the group object with the means to amalgamate several 

primitives together.  In fact, because the group contains an array of ObjectBase pointers, 

it is a polymorphic group.  Making a group polymorphic means that the group can 

contain any of the primitives that derive from ObjectBase, even other groups! 



 41

ObjectGroup
(from geometry)

ObjectBase
(from geometry)

Entity
(from Universe)

#objects

0..*0..*

 

Figure 37: A Group Both Contains and Derives From ObjectBase 

In order to access the group object properly, methods must exist that allow the insertion 

and deletion of objects from the group.  These methods are in addition to those that 

operate on the group in a manner similar to normal objects.  In fact, simple operations on 

groups were remarkably easy to program.  Interference tests between a group and another 

object are simply a logical OR of interference tests between the objects in the group and 

the object.  

 

Because the interference checks for groups and other objects are simply remappings of 

the interference tests to the objects contained in a group, interference tests between 

groups can be performed without worry on any type of object.  The test will always exist. 

 

Member function name Functionality 
AddObject Adds an object to the group 

Operator[] Gets an object stored in the group 

Size The number of objects in the group 
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3.4.6 Future Improvements 

The set of objects that is currently included makes the MPK an extremely flexible 

system.  Since polyhedral meshes are included as canonical objects, just about any robot 

can be approximated.  Most 3D cad packages support outputting geometry in mesh 

format, so it can be used with the MPK package. 

 

Some additional geometry objects would be nice to include for the sake of speeding up 

collision detection.  Most notably, polyhedral solids would be a good addition to the 

MPK.  These objects are similar to meshes, however a distinct inside and outside exists, 

enabling collision detection to bound both the interior and exterior of the solid, speeding 

up many calculations. 

 

Also, to combat the problems associated with constructing 3D robots from line segments, 

it would be nice to include cylinders and rectangular solids in the MPK.  Cylinders are a 

computationally cheap method of describing a robot’s link.  Intersecting a cylinder with 

other geometries is much cheaper than a polyhedral mesh describing the same surface.  

Along the same vein, rectangular solids are even cheaper to perform collision tests with.  

These solids can be represented with meshes, but their symmetry makes computation 

cheaper if treated as separate entities.  Both these entities make sense in terms of the 

interactive MPK system.  If users are designing robots online, they need access to simple 

geometric entities out of which robots are easily built.  Rectangular solids and cylinders 

certainly fit this bill. 

3.5 Collision Detection 

Collision detection is an area that has been touched upon briefly in preceding sections.  

To reiterate, a collision detection object is an object that takes the universe and its current 

state, including robot descriptions, obstacles, etc. and structures it so that collision 

detection queries are fast and optimized.  A collision detection query represents the 

motion planning algorithm’s interface to the robot and the environment.  For the MPK 

system, the types of motion planning algorithms that are being developed are very 

general ones.  Ideally these planners should know very little about the structure of the 
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robot and the environment.  That being said, the link between the planner and the 

robot/environment should be a very narrow one – the collision detection module forms 

this link. 

 

Collision detectors that are currently integrated into the system include 

1. A homegrown, simple collision detector 

2. Vcollide 

3. Solid 

Future iterations will include many others including one developed by Michael 

Greenspan of NRC in [11]. 

3.5.1 Simple Collision Detection  

Simple collision detection is what I use to describe the brute force collision detection 

scheme that I wrote into the MPK myself.  It takes every object in the universe and tests 

it against every other object in the universe using the built in interference testing routines 

that each object contains as data members.  Because it uses the built in collision detection 

routines and performs no optimizations, this collision detecting object is very robust.  It 

can handle any object vs. object interferences that I’ve written code to handle.  This 

amount of robustness is not present in some of the more sophisticated collision detection 

schemes. 

 

Simple collision detection is the only scheme that, at present, can handle interference 

tests for robots that contain line segment or sphere entities; some of the fastest entities in 

the system.  Its performance on polyhedral meshes leave something to be desired 

however.  The core of the mesh vs. mesh collision detection routines is the Vcollide 

library. 

3.5.2 Vcollide 

The University of North Carolina provides the Vcollide library in the public domain 

through their computer graphics department [9].  It is built on top of the RAPID library 

for collision detection, and makes improvements on it using a sweep and prune 

algorithm. 
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Vcollide handles only polyhedral meshes.  It does not require nor use solid objects or any 

geometry besides meshes. Practical limitations on robustness aside, Vcollide appears to 

be an extremely efficient collision detection scheme.  As a rough benchmark for the 

speed of the algorithm, the three link robot case to be discussed later in which all the 

links are polyhedra, it took on average 0.2 ms for each collision detection query, 

corresponding to about 5,000 collision detection queries per second.  This number is a 

rough estimate only.  The actual rate of collision detection queries depends on the 

complexity and shape of the underlying polyhedrons. 

 

Unfortunately, Vcollide provides only information about whether or not a collision has 

occurred.  Getting information regarding the how far apart two entities are and other 

complex functionality is not supported.  The linear interface is also not directly supported 

by the Vcollide library; however, I have added default linear support to the interface to 

make this possible.  Two different versions of the linear collision detection interface are 

provided.  Both of these inherit from the point collision detection interface.  Each of the 

linear interfaces supports testing a path between two configurations, one discretizes this 

path into preset number of sub points, and tests each of these, assuming that the entire 

path is collision free if none of these points contain a collision.  Forcing a set number of 

sub points is a very computationally expensive method of testing a path if the 

configurations being considered are close together.   

 

A second scheme discretizes the path into sub points just like the last one, but to avoid 

putting in too many sub points, a limiting criteria is enforced.  Each dimension in C space 

is given a minimum discretization limit.  This limit indicates that a path in C-space will 

be sampled with points no further apart than a certain distance along that dimension.  

When generating the sub points to sample, these limits are kept in mind.  The distance 

between the start and the goal configuration in each dimension is measured, and divided 

by the maximum sampling distance in that dimension.  Whichever dimension mandates 

the most sampling points is the one used to “drive” the path.  The number of sampling 
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points required by this dimension is used in discretizing the path ensuring that all 

dimensions have satisfied the maximum sampling width.  

3.5.3 Solid 

The solid collision detection library is another third party collision detection library that 

has been incorporated into the MPK.  It was developed by Gino van den Bergen, and 

placed into the public domain via the GNU free software license [10].  Solid supports 

geometry composed of any of several basic primitives, polygon meshes, cones, boxes, 

cylinders and spheres.  It uses the Gilbert-Johnson-Keerthi algorithm to accelerate 

collision queries. 

 

Solid supports collision queries that provide information on whether or not collisions 

occurred, which primitives caused the collisions, closest point information and 

approximate angle of collision information.  The entire set of solid functionality has not 

yet been included in the MPK, only enough to place it on par with Vcollide has been 

implemented.   

3.6 Planners 

The MPK system will eventually be used to evaluate the performance of a wide array of 

motion planning algorithms.  Programmers will develop their own algorithms within the 

MPK framework and add them to the system.  However, the interactive MPK must have 

several “baseline” algorithms for users to test out on the web.  As such I have 

implemented certain algorithms, often with the help of other developers.  Assistance is 

noted where significant. 

 

Also of note is the concept of global vs. local planning as well as complete vs. incomplete 

planning.  The difference between complete and incomplete planning is straightforward; 

a complete planner is a planner that will find a path to the goal if one exists, whereas an 

incomplete planner is not guaranteed to do so in all cases.  On the other hand, global vs. 

local planning is more of a spectrum.  A global planner is designed to plan the path of a 

robot completely from start configuration to goal configuration.  It is very powerful, and 

ideally should find a path to the goal if such a path exists, albeit sometimes taking a long 
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time to complete its task.  On the other hand, a local planner is a planner that is not nearly 

as powerful.  It is meant to be extremely fast, rather than complete.  In many situations, a 

global planner will use a local planner as a tool to plan intermediate paths while it 

searches for the goal. 

 

LOCAL
Fast

Not Powerful

GLOBAL
Slow

Powerful  

Figure 38: Difference Between a Global and a Local Planner 

The difference between a global and a local planner is not a yes or no difference, it is a 

spectrum onto which a planner will fall.  Some planners are very fast and tend to have 

more of a local flavor, while others will be slower, but more powerful. 

3.6.1 General Structure of a Planner 

The code structure of a motion planning algorithm is consistent with the object oriented 

nature of the MPK.  A planner is an object that derives from the PlannerBase abstract 

base class.  This parent class forces each planner object to implement several member 

functions.  
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PL_Linear
(from Planners)

PL_Aca
(from 

PlannerBase
(from Planners)

PL_IanRandom
(from Planners)

PL_LinearCollision
(from Planners)

PL_HasCollisionDetector
(from Planners)

CD_BasicStyle
(from CollisionDetectors)

PL_Sequential
(from Planners)

O_Bitmap
(from Planners)

#collisionDetector

11

PL_Boolean_Output
(from Planners)1

+bitmap

1

 

Figure 39: Class Hierarchy of Planner Objects 

As Figure 39 above attempts to illustrate, everything in the planner hierarchy inherits 

from the abstract base class PlannerBase.  This inheritance permits anything in the 

hierarchy to be stored in polymorphic storage structures such as arrays of pointers, etc.  

PlannerBase forces all the planners beneath it in the hierarchy to expose certain member 

functions, which are implemented as pure abstract functions in the PlannerBase class.  

Included in these functions are some that specify the start and goal configurations for the 

path planner to use.  Also, a Plan() function to tell the planner to begin calculation, as 

well as a mechanism for retrieving the path, GetPath() are included. Getting the path 

presents some problems in itself because there may be more than one type of path in the 

MPK at some point.  What this function returns is a pointer to a PathBase object that may 

actually point to a class that is a child of PathBase.  It is the responsibility of the calling 

code to sort out what the actual type is and treat the path appropriately. 
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In truth, all the planners inherit from a class slightly further down the tree from 

PlannerBase, PL_HasCollisionDetector.  This class is the same as the PlannerBase class, 

except that it maintains a pointer to a collision detector object.   

 

Beneath this class, the structure of the hierarchy diverges slightly.  The classes 

PL_LinearCollision and PL_BooleanOutput indicate that the planners deriving from 

them will use different interfaces to the collision detection objects.  PL_LinearCollision 

uses the CD_Linear interface, while PL_BooleanOutput uses the point probing collision 

detection routines found in CD_Bool.  The word output appended to PL_BooleanOutput 

indicates that for the time being these classes also contain an output window for 

debugging purposes. 

3.6.2 Linear 

The first planner to find its way into the MPK is what I call a straight line planner.  It is a 

local planner that operates in much the same way as the CD_Linear collision detector, in 

that it attempts to plan a path by checking several points along a linear path in C-space 

between the start and the goal.  The Linear planner uses only the CD_Bool interface to 

collision detection, not the CD_Linear interface.   

 

The path that is returned by the planner is a sequence of points intermediate between the 

start and the goal.  If there is no complete path, a partial path, ending in an interference is 

returned. 

 

This planner is not sophisticated.  It was the first “proof of concept” planner that was 

included in the MPK and its presence persists only because it is good for testing purposes 

due to its simplicity.  It is guaranteed never to crash or contain memory leaks.  

Unfortunately, it is not a very powerful or complete motion planning algorithm.  It fails 

to find a valid path if there are any obstacles between the start and goal configuration.  

Because this planner was written to make full use of the MPK interfaces, it took only 

about 15 minutes to code and test completely, making clear to me the benefits of using 
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the MPK system.  To illustrate the ease of implementation, the code of the linear 

algorithm is presented in Figure 40. 

 path.AppendPoint( startConfig ) ; 

 

 const long int steps = 1000 ; 

 path.Clear() ; 

 

 //test all points from start to goal  

 Configuration current = startConfig ; 

 Configuration offset = goalConfig - startConfig ; 

 for( long int i = 0; i <= steps; i++ ) 

 { 

  if( collisionDetector->IsInterfering( current ) ) 

  { 

   return false ; 

  } 

  path.AppendPoint( current ) ; 

  current += ( offset * (1.0 / steps ) ) ; 

 } 

 return true ; 

 

Figure 40: Code of the Linear Planner 

Note how little setup and teardown the MPK requires the planner to perform.  The only 

setup is to use the start and goal configurations stored in the startConfig and goalConfig 

variables.  These can even be used as is if the programmer desires.  And as for teardown, 

putting the path points into the PA_Points structure is all that is needed. 

3.6.3 Random 

To address the problems with limited capability that the linear planner contained, but still 

retain the simplicity of implementation it had, I wrote a slightly more complex planner.  

The Random planner attempts to plan a path from start to goal that avoids simple 

obstacles. The linear planner simply connected a line from start to goal in C-space, 

meaning that if that straight line was blocked, no path was reported.  The random planner 



 50

attempts to avoid the obstacle by placing one intermediate point at random in C-space, 

and using it as a “via” point.   

 

If the path using the via point is still not collision free, a new random via point is chosen.  

This algorithm repeats until a valid path is found, or a specified number of iterations has 

been exceeded.  This planner is still quite limited, since many paths will generally require 

more than one via point in order to move from start to goal. 

3.6.4 ACA 

The realm of global planners included in the MPK framework starts with the ACA 

planner.  This planner is global, and is guaranteed to find a path from start to goal within 

a given resolution if one exists, given sufficient time.  A brief description of the 

algorithm as it was defined in [12] is as follows. 

 

Working outwards from the start configuration, the planner places “landmarks” in c-

space.  A landmark is defined to be a collision free point in c-space.  The first landmark is 

defined to be the start configuration.  Associated with each landmark are several 

“embryos”, these are additional points in c-space near the parent landmark that are also 

collision free.  For each embryo connected to a landmark there exists a path between its 

location and the landmark’s location that can be found using a local planner. 

 

The algorithm begins by using the local planner to determine if there is a path between 

the first landmark and the goal.  If there is not, then one of the embryos in the system will 

become a new landmark.  The embryo that undergoes this metamorphosis is defined to be 

the one that maximizes the distance between it and any other landmark already in 

existence.  This embryo, once chosen, becomes a landmark, and must generate random 

embryos of its own.  The new landmark is then tested to see if the local planner can reach 

the goal from there.  If not, then the algorithm repeats itself.  A graph is kept of the tree 

of landmarks, with connections between landmarks and their parents.  Once a landmark 

can reach the goal, this graph is traversed to build the ultimate path. 
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This algorithm is very good at completing its task and finding a path, however, when the 

robot must maneuver through tight spaces, often an extremely large number of landmarks  

must be placed, and the algorithm may take a long time to complete its planning task. 

 

Juan Manual Ahuactzin, the original architect of ACA (also a regular summer visitor to 

the Robotics Lab), and I ported this algorithm from its original form to a form compatible 

with the MPK.  Juan modularized his algorithm so that calls to the collision detection 

routine were encapsulated in wrapper functions, allowing me to easily point them to the 

proper MPK calls.  He also structured his code so that I could easily convert it from its 

native C to object oriented C++.  In addition, I made a few minor improvements.  

Originally, there were parameters in the algorithm hardcoded using #define statements, 

presumably to make the C code more easily reconfigurable.  I removed all #define 

statements.  Some were converted to data members of the object and others were 

eliminated, meaning that limitations such as a maximum number of joints are no longer 

present, and parameters such as the number of embryos to create can be set at runtime, 

rather than at compile time. 

3.6.5 Sequential 

The sequential planner was ported to the MPK system by fellow researcher Gillian Lo.  

Her efforts are documented in [13].  This planner attempts to use the serial nature of a 

robot to its advantage when planning a path.  It breaks the robot up, and plans a path one 

link at a time, starting with link 1, the link closest to the base in the kinematic chain.  

 

The path for each individual link is computed by discretizing joint space, and computing 

a 2D “bitmap” representing collision locations for all possible values of this joint, and all 

positions of the robot in the paths of previous links.  

 

This algorithm is very robust.  If a path exists from start to goal, it will almost always 

find it.  There are a few special cases in which a path exists, but will not be found.  There 

are a few parameters that can be tweaked with regard to the operation of this planner.  As 

mentioned, the resolution of the bitmap can be altered, as can other internal parameters, 
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level of backtracking, maximum number of links, etc.  In future I would like to revisit 

this planner, and make each of these parameters user configurable. 

3.7 File I/O 

During the later stages of this project, file IO became an important issue.  While porting 

the sequential planner, it became apparent that there were bugs in the algorithm that was 

provided.  In the process of debugging, test cases of robot/obstacle configurations that 

caused the planner to break were discovered.  Functionality to save these test cases for 

later tests was desired.  That way, once the bug had supposedly been fixed, the exact test 

case that was used to discover it could be used to test the fix.   

 

For the time being, file I/O is a function of the user interface.  Although in later iterations 

of the MPK as an interactive web system, file I/O may become a task that the server 

performs.  In the PC prototype of the MPK user interface, the system contains a universe, 

replete with robot and obstacles.  It contains a start and a goal for the robot, as well as 

information regarding which collision detection scheme, and planner to use to compute 

the path.  If a planning task has been completed, it will also contain a path.  In order to 

satisfy the need to save test cases, all this information must be output to disk.   

 

As mentioned, the user interface is responsible for file I/O.  When the user selects save 

file in the PC prototype menu, a file is created on disk.  Henceforth, that file is treated as 

a stream.  In c++ terminology, a stream is an object used for I/O.  Whether it is to disk, 

screen, or some other device, streams are always treated the same way.  Treating I/O as 

stream I/O also allows me to standardize the interface to I/O routines for various classes.  

It also allows me to write polymorphic I/O routines.  Henceforth, I/O is described in 

terms of serialization.  Serialization is the process of turning an object into a text string, 

while deserialization is the reverse process, creating an object from text.  Serialization 

and deserialization are terms commonly used in file I/O. 

3.7.1 Serializeable class 

All elements in the MPK system that can be output to disk inherit from the Serializable 

class, which is an abstract base class that forces its children to expose two member 
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functions: Serialize() and Deserialize().  Both of which require a stream as a parameter.  

Serialize requires an output stream, while deserialize requires an input stream.  In 

addition to the Serialize and Deserialize member functions, I have chosen to overload the 

stream output operators that are native to the standard library of C++; the operators ‘>>’ 

and ‘<<’.  These operators allow you to output objects to a stream in a straightforward 

manner.  One can simply write  

outputStream << myObject ; 

and serialization has been accomplished, making this an extremely convenient operator in 

cases where many items must be serialized one after another.  Writing 
outputStream << object1 << object2 << object3 ; 

is easier than writing 

object1.Serialize( outputStream ) ; 

object2.Serialize( outputStream ) ; 

object2.Serialize( outputStream ) ; 

 

These stream output operators do not require much additional coding effort however, 

because internally they simply utilize the Serialize/Deserialize operators  

3.7.2 Polymorphic Deserialization 

One problem inherent in Deserialization (reading objects from file) is encountered when 

collections of objects have been stored.  Polymorphism permits lists and arrays of 

pointers to a base class to be stored.  When these are subsequently serialized, the member 

function 
pointerToUnknownObjectType->Serialize( stream ) ; 

must be called, properly serializing the object to which the pointer points.  However, 

when reading this object back from the file, you need to allocate memory for an object, 

and know which serialization routine to call.  Memory allocation should not really be the 

responsibility of the client’s code.  As such, I implemented a static member function in 

the parent class of the object hierarchy that is capable of performing Deserialization of all 

its children.  Thus all the programmer needs to do is call 

ObjectBaseClass* ptr = ObjectBaseClass::Deserialize( stream ) ; 
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and the object will be correctly read from the file.  In order to permit this functionality, 

some constraints are placed on the serialization of these objects.  In particular, flags 

indicating the type of an object are essential in order to be able to properly read them. 

3.7.3 File Structure 

The file structure in its current state is extremely primitive.  It permits loading and saving 

of all robots and environments that can currently be created using the PC prototype of the 

interactive system.  This file format is not meant to be edited by hand, therefore little 

consideration is placed on readability or tolerance for errors in the file.  Only primitive 

support for comments is provided.  These are drawbacks; however, manual editing of the 

file is not something that is likely to be performed by many users.  Editing kinematic 

descriptions is much easier performed online, in an interactive manner.  Similarly, 

geometry is likely to be read from file rather than typed in manually by a MPK user. 
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Chapter 4 Internet Connectivity 

It is a desired aspect of this project that people be able to make use of the MPK system 

from remote locations, specifically via the web, which will allow other researchers to see 

what the capabilities of the system are, and how the MPK can be adapted to service their 

needs.  Although it was not something that I had planned to spend much time on, the 

Internet connectivity has begun design and is mentioned here for completeness.  At 

present, we are capable of demonstrating use of the MPK via the web.  A user can choose 

a robot from a short list of predefined robots, they can select some predefined obstacles, a 

collision detection library, and a planning algorithm, then tell the server to plan a path.  

The user can then see this path animated in a browser window.  Much of the front end 

work was done by Javier Fransisco Blanco, a visiting student from the University of 

Salamanca, Spain, and will be documented in a forthcoming work[8]. 

 

I spent time working on development of the server side of the application.  What I 

managed to accomplish was to lay the groundwork for future development of this 

application.  At present the server application is capable of listening on a port for any 

client applications to connect.  When this happens, the server spawns a child thread to 

process commands from this particular client.  Only a few requests are currently 

supported.  The client application is allowed to choose from several default robot 

configurations, much the same as the menu options in the PC prototype.  The client can 

then select a collision detector type, a planner type, a start and goal configuration, and tell 

the server to begin planning.  Once planning is complete, the client can request the server 

return the path it has computed.  All the above functionality is working, but only in a very 

rudimentary form.  I have not performed much “crash proofing” of the server application.  

As it stands, the program uses core MPK code, and is fairly robust simply because the 
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objects it uses are robust, however, the communications aspect of the server is new code, 

and not yet thoroughly tested. 

4.1 Client Server Architecture 

The primary architecture of the interactive MPK system consists of a web based front 

end, communicating with a server daemon running locally on one of SFU’s computers.  

The front end will allow the user to design a robot and environment, and set start and goal 

configurations.  Essentially it will allow the remote user to specify a problem to be solved 

by a planner through the MPK system.  Once the problem has been fully specified, it will 

be sent to the server application for processing.  When the server has completed this task, 

it will return the results it found – the resultant path. 

 

Communication between the client and the server is done through raw TCP/IP socket 

connections.  Our other options included CORBA and DCOM, but we rejected these 

because of the long learning curve involved with each of them, along with issues of 

compatibility and cost.  COM/DCOM is only compatible with Microsoft platforms, while 

CORBA would cost the users of the system money to have installed.  TCP/IP is free, very 

general, and not difficult to program. 

4.2 Java Front End 

The front end is required to provide a user friendly interactive environment for the user.  

The UI is the only part of the system they will be seeing at first, as opposed to the code 

toolkit, so it is essential that it aspire to be easy to use, and comfortable to design path 

planning problems with.  Several problems should be pre-defined, so that users can begin 

to see what the MPK is all about right off the bat. 

 

Some criteria for the front end are as follows: 

1. The front end must work across multiple platforms; Sun, PC, Mac, etc. 

2. It should be browser independent. 

3. It should allow as wide an array of researchers to experiment with the MPK as 

possible. 
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4. It should be easy to use, and have a simple UI that researchers using multiple 

languages could understand it. 

 

In order to satisfy these constraints, we chose the Java development language in which to 

write the front end.  Java functions on all browsers, and on multiple platforms.  It was 

designed to be a cross platform language.  One drawback to the Java approach is that 

because it is not compiled code; it tends to be a little bit slower than a standalone 

application might be.  Speed is not really a factor though, because the front end does not 

have to be very fast.  Animating robot paths smoothly would be nice, but the important 

aspect is that researchers be able to see that the task has been correctly planned.  In fact, 

since planning is the most time consuming aspect of the use case, and it’s already running 

on our server, which should be very fast, the speed aspects of Java are not a big issue.   

 

One question that arose during preliminary development of the Java UI centered around 

3D display technology.  On the PC prototype, OpenGL is the default display technology 

used.  Choosing this was basically a moot point.  All Windows NT machines come with 

OpenGL installed.  However, for the web based front end, the choice of display methods 

is not so simple, several options exist, each with its own pros and cons.  JavaGL[6] is a 

loose wrapper shell over OpenGL.  It requires that OpenGL be installed on the client 

machine, and mimics the functionality that OpenGL provides to the PC prototype.  

Java3d[7] is a more powerful architecture that makes more complex graphics routines 

possible.  Unfortunately, it requires additional components to be installed on the host 

machine, in addition to OpenGL.  The third option is one that requires no additional 

components to be installed whatsoever, this is simply to use native Java drawing routines 

to render the robot to the screen. 

 

The rendering option that we have preliminarily chosen is Java3D.  Since both Java3D, 

and JavaGL require additional installation effort on the client machine, and the Java3D 

solution makes development easier, it seemed like the logical choice.  At this time, 

development of the front end has completed to a point where it emulates the PC prototype 
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with regard to specifying the start and goal configurations of the robot, and visualizing 

the paths that are returned 

4.3 C++ Server 

The front end will communicate with a dedicated server operating on one of SFU’s 

machines.  The server is responsible for coordinating communications with multiple 

remote users at the same time.  It will receive commands from the remote machines, and 

process these commands.  Once planning tasks have been completed, it will send the 

results back to the remote UI for display to the user. 

 

The server application must be very robust.  Because additions and modifications are 

going to be made constantly to the interactive system, the server application will be 

periodically changing.  Some of these changes will undoubtedly contain bugs, some of 

them crash bugs.  With stability in mind, the design of the server should be such that if a 

remote user executes a command that causes the server to crash, it can recover 

automatically from that crash.  Equally importantly, if multiple users are accessing the 

server at the same time, one user should not be able to crash the system for everybody.  In 

order to accomplish this level of fault tolerance, the server architecture will be that of a 

multithreaded system.  Users first connect to the primary server, which assesses the needs 

of that particular user.  It will then spawn a secondary MPK server that process 

commands issued by the user.  There is a one to one relationship between remote users 

and secondary servers, so that if a user crashes his server, other users are unaffected.  

Presently, this mechanism is in place, although robustness issues have not yet been tested. 

4.4 UI Prototype 

Because the Java UI was not completely developed when this paper was begun, a PC 

prototype of the user interface was developed.  The PC prototype allows me to 

demonstrate aspects of the MPK project without having to focus on UI design, which is 

not my primary area of interest.  It also allowed me to debug the MPK code without 

having to operate within the client server framework.  The UI Prototype was developed in 

C++ using the MFC library that is distributed with Microsoft Visual C++.  This library 
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automates certain Windows programming functions, and in general accelerates the pace 

of development. 

 

Eventually, all the functionality that the UI prototype allows will be permitted in the 

remote interface.  The level of convergence between the two interfaces is not complete at 

this point.  To properly simulate the Java UI, the C++ prototype should spawn a server 

object, and communicate only with it.  At present, the C++ prototype does not spawn a 

server, all the MPK functionality is accessed by directly calling MPK functions.  This 

method of invoking commands is the route a programmer would take if they were going 

to use the MPK as part of some other system.  What it does, however, is mask some of 

the complexity of developing the Java UI that will be encountered later.  Because the 

C++ prototype has access to the full set of the MPK library, operations like rendering a 

robot are simplified.  The Java UI will have to implement these operations itself. 



 60

Chapter 5 Future Improvements 

Due to time limitations of a BASc thesis, some aspects of the system that had been slated 

for development in this cycle could not be attended to.  These aspects of the MPK will be 

addressed in subsequent versions.  These all fall under the broad heading of extended 

functionality. 

5.1 Moving Objects 

One area of the MPK’s kinematics and collision detection routines is the concept of 

moving objects.  Moving, or time varying objects refer to a planner’s ability to plan a 

path for a robot that avoids an obstacle whose position changes with time.  Time varying 

obstacles, in their simplest form are objects in the universe that exist in frames that are 

not controlled by joint variables that the planner can modify at will.  These obstacles exist 

in frames that are controlled instead by time.  A simple example of a time varying object 

would be a ball that is rolling across a table at a constant velocity.  The equations of 

motion of this object are extremely simple, and completely specified well in advance of 

any planning task.  Maneuvering a robot from start to goal while avoiding such an object 

would constitute the planning task.  In this case, the start and goal configuration might be 

the same, causing the robot’s path planner to plan a path that simply avoids the rolling 

ball, but doesn’t rally go anywhere. 

 

The concept of time is in itself a sticky topic to introduce to the MPK.  There are several 

different possible ways to treat time.  It can be a concept known only to planners, and 

they deal with time varying objects as a special case.  Time can be treated by planners 

and collision detectors as a separate parameter, and special care must be taken when 

specifying values for it – the values can never decrease for example, because “going back 

in time” is not permitted. 
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I propose that time be treated like a joint variable just like all the others, with as little 

special consideration as possible.  Since the entire time history of the obstacle is known, 

we can specify its position given the value of time, making it possible to leave queries 

about collisions with the obstacle at a given time in the hands of the collision detection 

object.  A different, time enabled, collision detection object will have to be derived.  

Point collision queries will remain unchanged, specify a vector in C-space and determine 

if there is a collision or not.  Only now, one dimension of C-space is controlled by time 

T.  Linear queries will have to be modified, however to preserve directionality.  In 

standard, time independent queries, an implicit assumption exists that if you can traverse 

a path from C1 to C2, two points in C-space, the path from C2 to C1 can also be traversed.  

However, if time is inserted as one of the elements in the C vector, this is no longer true.  

In fact it is completely false.  If you can travel from C1 to C2, that means that time( C2 ) > 

time( C1 ).  Travelling the other way is tantamount to going back in time, and must be 

ruled impossible.  This criterion affects any areas of the MPK that can be considered 

local planners. 

 

Planning algorithms may also have to be modified to recognize the lack of symmetry this 

represents.  Graph search algorithms must now operate on directed graphs, rather than 

undirected ones, for example.  It may be necessary to add constraints to the collision 

detection object to specify maximum joint movement rates, allowing the collision 

detector to recognize that moving from point A to point B in C-space in a given amount 

of time may be impossible due to physical limitations on the movement of joints. 

 

Notwithstanding the modifications that must be made to the collision detection routines, 

changes to the kinematics structure will also have to be made.  Some way of representing 

the movement of an object with respect to time must be created.  This representation 

could be either a list of frames and corresponding times that are interpolated, or some 

more complex mathematical function description.  Either way, representing the motion is 

a fairly complex routine.  Interpolation of frames is non-trivial.  One cannot simply 

interpolate the matrix elements that underlie the frame.  A quaternion representation of 
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the rotational component can be stored, along with a translation vector, which could then 

be linearly interpolated, or interpolated using some more complex spline method. 

 

Time varying objects must also support the notion of multiple robots, bringing to the fore 

one of the sticky situations I was discussing previously.  It is conceivable that one of the 

more common time varying objects a user might want to simulate using the MPK would 

be that of an additional robot operating on some fixed program.  This situation would be 

equivalent to a robot whose path had already been planned to move through the 

environment.  The second robot would now have to plan its path around the pre-existing 

robot.  In itself, no design problems more challenging than those discussed earlier for the 

general moving objects problem are posed in this case.  A problem does arise if the 

concept of having more than one robot in the system at the same time is carried to the 

next logical step – cooperative planning. 

5.2 Multiple Robots and Cooperative Planners 

Having more than one robot in the MPK system is not a problem.  The kinematics 

module supports robotic structures of a wide variety of types as long as they are all open 

chain robots.  Two two-link robots would be represented as 4 links, defined in a specific 

manner.  For planning purposes, the entire universe, all 4 degrees of freedom are treated 

as one planning task. 

 

Treating the entire universe as one planning task, to be performed by one planner 

eliminates an avenue of research from being pursued by the MPK, that of two planners 

working in tandem to solve the problem.  Because the universe described above 

represents two distinct robots, it is conceivable that there could be two different 

algorithms planning their motion.  Unfortunately, allowing more than one planner causes 

system design problems.  At present, there is no built in method for these two planners to 

communicate with one another to synchronize their tasks.  When collision detection 

queries are made, the entire state of the universe must be specified.  If two planners are 

operating in tandem, how does one keep track of the positions of joints for the robot that 

is being controlled by the other? 
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One proposed method for the MPK to allow synchronizing the planners is to do nothing 

special.  The programmer who writes a planner object that simulates cooperative 

planning will have to handle this problem.  That programmer can use multiple threads to 

operate each individual planner, and can place semaphores to restrict access to the 

collision detection object to one planner at a time.  Leaving things in the programmer’s 

hands does not seem to be an ideal solution by any means.  Too much work is left to the 

third party programmer.  If cooperative planning is deemed to be an important area in 

which the MPK will be used, additional attention should be allocated to this problem. 

5.3 Movable Objects 

A problem that is likely to arise are cases in which the robot in the system picks up an 

object that was originally considered an obstacle, moves it, puts it down, and continues 

on its way.  This situation could occur because moving the object was the planning task 

that the planner for the robot was supposed to solve a path for.  It could also occur if the 

path for the robot from start to goal is completely blocked by an obstacle.  In this 

situation, an extremely sophisticated planner could grasp the obstacle, move it out of the 

way, then proceed to complete its task.  

 

Kinematically speaking, the concept of a robot picking up an object is not difficult to deal 

with.  The robot has a tool frame defined, which is the frame that represents the position 

of the robot’s gripper.  In order to pick up an obstacle, all the kinematics module needs to 

do is transfer the object from its current frame into the tool frame of the robot.  Some 

transformation matrix will have to be applied to the object so that it maintains its position 

in world space, and the base frame of the object will switch.  It’s as simple as that. 

 

Questions of validity do arise however.  Should the MPK prevent a robot from picking up 

an object if the gripper and the object are too far apart?  Probably not, it’s best to leave 

this behavior firmly in the hands of third party programmers.  There should be a method 

of checking the distance between the gripper and any obstacle, but preventing a pickup 

should not be forced.  Also, if an object can be picked up, it can also be put down again, 
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bringing up another minor problem.  If the robot should happen to release an object, the 

frame it is defined with respect to switches to frame 0, the world frame.  However, if the 

robot released the object in mid air, it will stay there, floating in space.  This is all fine 

and dandy if we’re simulating the Canadarm on the space station, but for more earthly 

applications, gravity should pull the object down to the first stationary object.  

Unfortunately, neither the presence of gravity, nor any dynamic simulation capabilities 

are included in the MPK at this point.  These are potential, future areas of programming 

interest, but dynamics could not be added for quite some time.  For the immediate future, 

it should be sufficient to allow the robot to release an object anywhere, forcing third party 

programmers to ensure that they only drop objects in intelligent locations. 

5.4 Unknown Static Environments 

Yet another improvement to the MPK is the inclusion of unknown static environments, a 

type of environment about which the planner has only a limited set of knowledge.  

Commonly found in sensor based planning is the case where the planner initially knows 

virtually nothing about obstacles in the environment.  It must progressively “scan” the 

environment at different positions to learn enough to complete its task.  Scanning can be 

done via a laser depth scanner, proximity sensors, etc.   

 

Simulating these sensing devices would be the most difficult aspect of incorporating 

unknown static environments into the MPK.  The notion of a Sensor class would have to 

be created, along with a collision detection object that could store collision, unknown, 

and free space information.  Likely, the collision detection object in this case would 

maintain two representations of the universe.  The true representation, and the 

representation that can be “known” from any scans that have taken place.  

 

Adding this functionality to the MPK would be extremely desirable, considering much of 

the current research being conducted at SFU[14] and elsewhere is moving in the direction 

of sensor based planning. 
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5.5 General Geometric Planning Tasks 

Although the MPK system’s original goal was to provide a framework for motion 

planning algorithms, there is no reason that it should not be used to develop other 

geometric reasoning tasks as well.  Some possible uses for the MPK include automatic 

grasping, inverse kinematics, positioning and part mating, non-holonomic path planning.  

These tasks are better explained in [2] 
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Chapter 6 Conclusions 

I have implemented a core subset that demonstrates the proof of concept of the MPK.  

What has been accomplished is an overall framework for the entire system, along with 

several highly fleshed out modules.  The geometry and kinematics modules were meant 

to be my primary areas of focus, and as such, these are the modules that are most 

complete.   

 

Although the system is not completed, what can be done given the current state of the 

MPK is still quite remarkable.  From a code toolkit standpoint, programmers can use the 

MPK to construct any robot that can be described via DH parameters, including branched 

structures, and parallel manipulators.  Geometry can be loaded from disk, and used to 

represent the links of the robot.  Only a few file formats are supported at present, a subset 

of the VRML 1.0 standard, along with the Icollide/Vcollide format. 

 

Once a programmer has designed the robot and the obstacles, performing collision 

detection is a simple matter of instantiating one object.  All the internal collision 

detection optimizations are handled in a transparent manner, removing this, sometimes 

complicated, mechanism from the domain of the user’s work.  Assuming that most 

people using the MPK from a programming standpoint will be using it to develop motion 

planning algorithms, these programmers are all ready to go.  Once a collision detection 

object has been instantiated, their planner can make queries of it, until it has solved 

whatever problem the programmer had asked it to solve. 

 

As far as the interactive MPK system is concerned, development is also quite far along.  

Originally, I had planned not to perform any development work on the web-based 

application, opting instead to demonstrate functionality of the MPK using a PC prototype.  
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At present, the PC prototype is a fairly well developed application.  It capably 

demonstrates that the MPK code performs the tasks it was designed to perform.  The PC 

prototype has proved to be an invaluable debugging tool for me, and the other developers 

working on the project.  Using this prototype, developing new planners is extremely 

simple to do.  The prototype contains several built in robot configurations, and the 

capacity to add obstacles simply by clicking the mouse.  Adding a planner to the system 

is simply a matter of extending one of the existing planner objects in the system, and 

overriding one function, the plan() member function.  The web based application is 

surprisingly almost as far developed.  A proof of concept system that can demonstrate 

planning problems on predefined robots via the web can be demonstrated at present. 

 

As mentioned in previous sections, improvements can be made to all areas of the MPK, 

including the sections I focused on, such as geometry and kinematics.  The MPK is by no 

means “done”.  Further development is necessary to ensure that it achieves the goal of 

being a widely used system that aids the field of motion planning by allowing researchers 

to avoid programming overhead when developing new algorithms.  Taking the MPK 

from its current infant stages through to completion would make an excellent master’s 

thesis for one or more capable individuals. 
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Appendix : Denavit Hartenberg Links 


