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Abstract

The Motion Planning Toolkit (MPK) is ajoint research project conducted with input
from researchers at Smon Fraser University, the National Research Council, and
Internationa Submarine Engineering. The MPK system is a programming project thet |
undertook as partid fulfillment of my bachelor’ s thesi's requirements, representing my
effort to create a generd software toolkit thet programmers could use in the devel opment
of mation planning agorithms. A mation planning agorithm attempts to plan a peth for
arobot operating in acomplex environment such that the robot will not collide with its

surroundings.

The MPK system is made up of two digtinct sub-projects; a code toolkit and aweb based
gpplication. The code toolkit refers to a software library that third party programmers
will use to speed up development of motion planning dgorithms. It conssts of code that
alows programmers access to genera robotic data structures and agorithms. The web
based gpplication serves as a platform for demongtrating the functiondity of the MPK as
well asfor dlowing usto test and debug the underlying code.

The web based application is a client server gpplication running over the Internet.
Implementing it this way alows researchers who may be interested in the MPK to
evauate its performance through the web, before they go through the trouble of
downloading and compiling what could easily be avery large body of code. It dso
alows them to evauate the suitability of various planners to specific problems, and
perform some degree of benchmarking on different dgorithms.

My focus on this project was to come up with an overdl system design, then to focus on
the implementation detalls of two key components, geometry and kinematics. In
addition, | also designed other areas of the system, including the server sde of the web
based application. Currently, the core system architecture is fairly complete. | anticipate
that it will require only minor changes to support future development work. The

implementation, however, is not complete.
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List of Acronymsand Technical Terms

ACT

All purpose software library for robotics. ACT is compiled for
aUNIX environment using C, and provides some of the same
functiondity asthe MPK system. Unfortunately, ACT is not
an open source system.

Collison Detection
Query

A request from a planner object to the collision detection
module. The planner needs additiona information about the
3D Structure of the universe. For example: istherobot ina
collison sate given the current set of joint variables?

configuration

A st of variables completely specifying the position of a
robot.

CSG

Congtructive Solid Geometry. Defining solid moddsin terms
of regularized boolean operations performed on asmal set of
primitive objects. For example, abowling ball would be
represented by the difference of a sphere, and three little
cylinders for the finger holes.

Denavit Hartenberg
Parameters

A st of numbers that completely describe how oneframeina
robotic kinematic chain reates to the previous frame. A,
Alpha, D, and theta are the 4 parameters that make up the set.

DH Parameters

see Denavit Hartenberg Parameters

Euler Operator

A geometric operation used in the incremental construction of
solid polyhedra modds. Operators dlow for modifications of
thelocal geometry. Collgpsing aface to become avertex, or
cregting ahole in an exiding face, are examples of Euler
operators.

IGRIP

IGRIP isamodern Computer Aided Robotics system. It can be
used for smulation of robot sysemsand asatool in
developing new manipulators.

|SE

International Submarine Engineering

MFC

Microsoft Foundation Classes. A set of wrapper classes that
make Microsoft Windows programming easier to do when
usng C++

motion planning

The computationa task of planning the motion of arobot from
one configuration to another.

MPK

Motion Planning Kernd, thisis the software project described
in this document

NRC

Nationa Research Council of Canada

ORD

Object Rdationship Diagram. A diagram that describes the
manner in which objectsin an object oriented program relate
to one another.

viii




RTTI Run Time Type Identification. A C++ mechanism for
determining the type of object that a pointer is pointing to a
runtime. Thisdlowsfor programming while using deta
sructures that represent collections of objects of mixed type.

UML Universd Modding Language. A graphica descriptive

language that standardizes the creation of object relationship
diagrams (ORDs)




Chapter 1 Introduction

1.1 Robot Motion Planning: What is it?

“Motion planning, in its broadest sense, refers to the ability of arobot to plan its own
motions.”[1] More specificdly, the basic maotion planning problem[2] is defined as
follows: given aninitid and goa robot configuration, find a path between them, avoiding
callisonswith al obstacles dong theway. Robotic motion planning incorporates many,
somewhat diverse, areas of study including artificid intelligence and geometric

reasoning. It dso has applications to areas outside of pure roboatics, including usesin
animation and in the video game indudtry. In fact, many of the concepts used in motion
planning fal under the broad header of geometric reasoning — solving problems based on
geometric descriptions. These problems may include motion planning, grasping
problems, part positioning, €tc.

1.2 Current State of the Field

Thefied of robot motion planning comprises alarge body of academic research and
literature while remaining an active area of invedtigation. Although many researchers
believe that aspects of the technology could be well utilized in indugtrid systems, there
has been little direct industria gpplication of motion planning methods. One contributing
factor for thislack of gpplication isthe scarcity of proper tools. Commercidly avalable
robot smulators (ACT, IGRIP, ROBCAD) tend to have some limited motion planning
capabilities, typicaly oriented towards a particular technique. The mgority of research
efforts are focused on devel oping new representations and search methods, and the code
artifacts tend to be of a home-grown variety, unsuitable for extensve reuse.

Sincethelate 1970s, abig tool in solving motion plaming problems has been the notion
of configuration space (C-space)[2] of the robot. This C-space representsan N



dimensiond space in which each dimension corresponds to one degree of freedom of the
manipulator[3]. A point in C-space, therefore, corresponds to a configuration of the
robot where each joint is a a position represented by its vaue along the corresponding C-
axis. The configuration represented by a point in C-space can ether be avdid, collison
free, one for arobot, or the robot can be in callisonif placing it in that configuration
would causeit to interfere with an obstacle. The regionsthat correspond to the robot
being in collison with obstacles are termed C-obstacles. Since the mid 1980s, it has been
gpparent that obtaining an andytic description of C-obdaclesis very difficult. The
equations that govern its correspondence to the robot's position in Cartesian space are
highly non-linear. After thistime, use of adiscretely sampled verson of C-space has
comeinto vogue. C-space is sampled, and a search mechanism operates on the discrete
samples to complete the motion planning task. This search mechanism iswhat we
describe as a planner for mation planning purposes. The context of planning system that

| will useisthat of a search mechanism (planner) in conjunction with a collision detector,

amechaniam that can check if a discrete robot configuration isin collison or not.

Comparing different methods of mation planning is complicated by the lack of
standardized toals; thereis no way to place these planners on equa footing for the
comparison. The relative advantages and drawbacks of any given method are often
subtle and Stuation dependent. An enumeration of an agorithm’s computational
complexity is provided in mogt papers, but isrardy sufficient for ameaningful
comparison of dgorithms. Something more is clearly required.

1.3 MPK Project

The mation planning kernel (MPK) isaimed a addressing these issues and is a generd
system for testing various mation planning agorithms on different robot manipulator
configurations. The system was designed with generdity in mind, so asfew limitations
as possible were placed on manipulator structure and environment configuration. This
design dlows auniform evauation of the speed and effectiveness of various motion

planning agorithms when goplied to particular Stuations.



The system is an open source project that will be easily extensible by future researchers.
This ease of extenghility will dlow for the addition of new moation planning dgorithms

as they are developed and the underlying system will be general enough so0 asto make
these additions as straightforward as possible. Currently, the system has been completed
to the point where the basic motion planning problem discussed in 1.1 can be addressed.
Users are currently able to define robots, and perform collision detection on the robots
they have created. Thisfunctiondity isdl that is required for the creation of plannersto
solve the basic problem. In addition, severa planners have aready been implemented
within the MPK framework for benchmarking purposes. Future additions to the project
will include unknown environments, sensors, Smulation, multiple robots, dynamic
andyds, specification of forces, and speeds, etc. Provisonsto dlow for thistype of
functiondity have been built in from the initid design phase through to the current state

of the project.

The MPK hastwo distinct facets. Firg, it represents a code library that programmers can
use when devel oping systems requiring robotic information or geometric reasoning tasks.
Second, it represents an interactive system that researchers can use over the web to try
out various motion planning agorithms on specific problems, evauating planner
performance and benchmarking speed. This web based gpplication operates on aclient
server modd, using a Java front end running through aweb browser. The front end

communicates with a server gpplication running localy on an SFU machine.

C++ Server Java Ul
Running at SFU Running Through Web

Figure 1: Client Server System Architecture



We chose a Java Front end because it is a cross platform, cross browser language, so it
gives us alarge base of people that can test out the MPK. C++ was chosen for the server
sde implementation due to the large number of third party librariesthat exist in C/C++
that could be added to the server. PC platforms were chosen becauise one of the partners
inthe project, I SE, uses PC'samost exclusively.

What the MPK contributes to the field of robotics and motion planning isa generd
platform upon which to build programs that require a foundation in robotic geometry.
The MPK provides users a code framework that allows them to set up robot kinematic
structures easily and subsequently import geometry that will flesh out the description of
the robot.

Once arobot has been described, the user can useit in avery high leve fashion. All the
mundane “bookkeeping” istaken care of by the MPK. Hiding the bookkeeping alows
users to focus on more high level problems, such asthe design of new agorithms,
without getting needlessy bogged down in the details of designing a system that could

eadly become quite large.

Additiondly, writing code in an MPK framework alows users immediate access to the
wide range of sample data that we have creasted. Designing smple robotsisnot a
difficult task, but as the complexity of kinematics and geometry increases, the time
required to design the robot also increases. Using the MPK allows usersto use pre-
created libraries of robots, and working environments, making testing of agorithmsa
ampler task and dlowing for agorithm benchmarking to be performed on an equd
footing.

Firgt and foremogt, the MPK (Moation Planning Kernel) system is envisoned as atestbed
in which researchers can evauate different motion planning agorithms in Stuations that
closely resemble the red world gpplications they may be consdering. The user of the
systemn should be able to specify a manipulator ructure, the kinematics and geometry
that define arobotic manipulator. They will also be able to specify the workspace of this



robot dong with any obstacles that may exist within the workspace. The user will then
define atask for the robot to perform. In the smplest motion planning example, this task
would be smply agtart and agoa configuration for the manipulator.

Once the user has specified dl the criteria above, the eval uation can be performed.
Multiple agorithms are available in the system that are cgpable of tackling the problem
that the user has specified. The user will be able to run each of them in turn, observing
the results, and measuring the time the dgorithm took to perform itstask. In thisway,
users can decide for themselves which dgorithms best suit the particular problem they

need to solve.

1.4 My Contribution to the Project

This thesis focuses on the design and implementation of severd core areas of the MPK.
The overal design of the MPK is discussed; along with a detailed design of two core
areasto which | contributed. Thetwo areas | worked extensvely on are the Geometry
module and the Kinematics module of the system. | |eft other aspects of the project such
as the user interface, and Internet connectivity sectionsto others, athough some work on

these areas was necessary to get the system up and running.

The MPK system that has been developed to this point contains multiple motion planning
agorithms, dong with severd different collision detection schemes for these dgorithms
touse. Currently, a prototype user interface to the MPK using the Microsoft Foundation
Classes (MFC), has been designed. MFC was chosen because it speeds up Ul
prototyping on the PC. ThisUI is a standalone program that runs on a Windows
platform. A web based gpplication, complete with a JAV A front end has been developed
that conforms to this prototype. See [8] for more information.

Since the MPK will serve as a code toolbox for future robotics based application
development, object oriented structures (classes) for robotic manipulators, environments,
collison detection, and motion planning have been created and made available to the end
user. Thismodularity is done in such away that making additions or modifications to



any of the above components will be easy to accomplish, but should be generdly
unnecessary. The robotic classes should be adequate as they stand for most tasks.

The extensbility of the sysem is due in part to its open source nature, in much the same
way as other ingtitutions provide academic software systems. For example, the
University of Utrecht in the Netherlands provides an open source library for
computationa geometry — CGAL, and The University of North Carolina provides severa
libraries for collison detection of polyhedra meshes. Some of these libraries are used
within the MPK system, in much the same way that | hope my system will find its way

into other more complicated projects.

1.5 Thesis Layout
The overdl MPK system design is described in Chapter 2. 1t includes an overview of the
various modules of the system, dong with a functiona specification for the web based

user interface.

Chapter 3 goesinto far more depth of the system design than does Chapter 2. It describes
the inner workings of the modules, as well as functiona descriptions of dl the important
objectsin the system.

Because the MPK isfar from complete, Chapter 5 outlines various directionsin which
the project can be taken. Many of the suggestions outlined in this chapter dready have
the groundwork laid for their implementation.



Chapter 2 MPK Design

In order to design a software system of this magnitude, avery detailed design approach
was followed. Sysem maintainability is of the utmost importance, snce other
researchers will use the code written for the MPK in their software systems.

2.1 Maintainability

A big problem associated with systems as large as the MPK is that when future
researchers examine the code, they often won't know where to begin. What will be
beneficid to them is some sort of roadmap illustrating which sections of code interact
with each other, and in what manner. In the context of an object oriented system, which
the MPK is, this roadmap trandates to the need for an Object Relationship Diagram
(ORD). Many tools exist for creating such a diagram, some of which aso incorporate
automeatic code generation and commenting. | chose to use an evauation verson of the

Rose toaol from Rationd Softwareto asss mein thisarea

Rationd Roseis a software tool that alows me to draw universal modeing language
(UML) diagrams, annotate them, and generate an automatic code framework from the
UML dgructure. Oncethe UML diagram has been created, it is extremely easy to see
what parts of the software interact with one another, and in what manner.

2.2 UML Overview

Given that severd UML diagrams will be gppearing throughout this document, a brief
tutoriad on the symbols and structure of UML isin order. | will tailor this discussion to
UML as gpplied to an object oriented C++ program, since that isthe areain which | used
itinthis project. Of course, UML is gpplicable to awide variety of problems beyond
C++ code, but that is beyond the scope of this document.



2.2.1 Objects

The basic entity in Object Oriented Programming (OOP) isthe Object. In C++, this
entity is equivaent to the class. UML represents classes graphically as shown in Figure
2.

ClassName

Figure2: UML Class

A class defined as above would generate C++ code equivaent to that shown in Figure 3

cl ass Cl assNane

{
b

Figure 3: C++ Equivalent of an Object

The name of the classis shown in the topmost field of the box in the UML diagram,
followed by two additiond fields below. These additiond fields can contain class
attributes and operations. Attributes are stored in the first field and are best thought of as
data members of the C++ class. Figure 4 shows an example of aclass with an attribute.
The atribute is displayed with its name, followed by its datatype, in this case: unsigned

int, one of C++'s aomic types.

Class1
& attributeName unsigned int

Figure 4: Object with an Attribute

Immediatdy to the I eft of the attribute s name, is amodifier specifying the vishility of
the data member. These represent the C++ reserved words public, protected, and private.
The set of UML vishility modifiersis shown in Figure 5.




‘:} Public
'E:} Protected
&} Private
Figure5: UML Vigbility Modifiers

The plain sguare indicates an attribute with public vishility, the key, protected vighility,
and the lock, private vighility.

The UML object shown in Figure 4 would generate C++ code smilar to

Cl ass cl assl

{
private:

unsigned int attributeNane ;
}

Figure 6. C++ Code Fragment for a Classwith an Attribute

In addition to attributes, UML objects can aso contain operations, shown graphicaly in
the bottommost field of the class diagram. These are equivaent to methods or member
functionsin traditional Object Oriented terminology. A UML object with an operationis
shownin FHgure7.

Class2

“‘operation()

Figure 7: UML Object with an Operation

2.2.2 Object Containment

In addition to class attributes, UML aso supports an aggregation modifier that helps
create aggregate classes. The diamond arrow in Figure 8 indicates that ClassA contains
ClassB. Infact, there are two separate aggregate class modifiers. The white diamond
indicates that ClassA contains ClassB by reference — it contains a pointer to ClassB only,

1




while the solid black diamond indicates ClassA contains ClassB by vaue, it is completely
contained by ClassA.

ClassA ClassB

ClassA ClassB

Figure 8: Example of an Aggregate Class

In Figure 8, the white diamond aggregation would generate code smilar to the following:

cl ass Cl assB

{
s

cl ass Cl assA
{
private:

Cl assB* nyCl assB ;

Figure 9: Code Generation of Aggregate Classes

2.2.3 Class Inheritance

Object Oriented programming maintains that code reuse can be enhanced through the
mechanism of classinheritance. This paradigm holds that a parent class will passon dl
of itstraitsto classesthat are derived from it. In order to make class derivation
graphicdly dear in UML, an additiona modifier is presented, that is the generalization

modifier.




ClassC

ClassD

Figure 10: Class Inheritancein UML

In Figure 10, ClassD inherits from ClassC, and would generate code similar to the
following:

cl ass Cl assD

{
}

class ClassC: public ClassD
{
}

Figure 11: Code Fragment for Derived Class

The difference between classinheritance and class aggregation can be explained through
the IS-A vs. HAS-A rdationship. Inheritance representsthe IS-A relationship, while
aggregation represents aHAS-A rdationship. Figure 12 shows the difference between
the two. Inthisexample, asalboat IS-A boat, thusit inherits from the boat class. The
salboat dso HAS-A sal. The parent class (Boat) in turn HAS-A captain, thus the child
class, salboat, dso HAS-A captain through inheritance.

Figure 12: Illustration of the |S-A vs. HAS-A Relationship

2.2.4 Explanatory Arrows
Not dl the symbolsin UML have adirect code equivaent. Explanatory arrows for

example are used merely to convey a concept, and not to refer to any code per se.




ClassA

Figure 13: Illugtration of Explanatory Arrows

The explanatory arrows shown in Figure 13 are a perfect example of this. The two
classes have some relationship to one another, but it is not as well defined asthe IS-A or
HAS-A reaionship. Mostly, thisis used as a descriptive tool to explain some additiona
relationship between two classes.

2.3 User Interface Functional Specifications

Asmentioned in section 1.3, one aspect of the MPK is an interactive system in which
users design robots and environments, and test various motion planning tasks. This
application makes use of much of the code in the code toolkit aspect of the project, and
therefore guarantees that the code toolkit is adequately exercised from a software testing

perspective.

A complete design of the interactive system includes a web based front end,
communicating with a server system resident on a PC based Windows NT system.
Running the server on aWindows NT PC platform is not a design requirement, per se,
however my exiging familiarity with this platform made desgn much eeser. From the
user’ s perspective there should be no difference perceived with regard to what particular

platform the server is running on.

Thetypicd scenario in which auser would operate this application is shown in Figure 14



Desgn arobot

Design an environment composed of obstacles
Formulate a planning task

Choose dgorithms, and run atest

o &~ 0w DN PE

Evauate the results

Figure 14: User Workflow for the Web Based Application

Once the user completes this cycle, they will likely wish to iterate on some part of the
desgn. Thus, the ability to modify any part of the user’sdesign isan integrd
condgderation in dl functiona areas of the program. In particular, the user may want to
dter the motion planning agorithm and the planning task (Start and god configuration)
they requested. Alterations to the robot and the environment obvioudy will take place,
but are likely to be less frequent.

2.3.1 User Creates a Robot in the System

Designing arobot isanon-trivid task for the user. It involves specifying the kinematic
dructure of the dong with the physica geometry representing each link. Currently the
MPK supports the most common way of describing kinematic structure; that of Denavit-
Hartenberg (DH) notation, making specification of arobot rather straightforward. All the
user need supply to describe alink isthe DH parameters associated with it, and the
previous link in the chain. Since many physica robots aready have DH parameters
defined for them, often from the factory, specifying them isnot likely to be difficult.

Previous link information for each link in the chain is required so that the MPK can
support branched robot structures such as arobotic hand. DH parameters by themselves
can only specify asingle, unbranched, open chain robot. Adding the additional
information alows us to maintain the familiar DH notation, but support awider array of

robots.

The geometric description of arobot is somewhat more difficult for the user to define
interactively. An online description of complex polyhedral meshesis not afeasble
solution to the geometry problem because it isfar too arduous for a user to specify.



Instead, the MPK web based interface supports reading predefined geometry from the
user’ sfile sysem through VRML 1.0 and 2.0 file formats. Also supported will be the
online definition of smple geometric entities— rectangular boxes, spheres, etc using the
mouse and the keyboard. Although a user using only the web based gpplication may be
somewhat limited with regard to the complexity of robot and environment that can be
crested, the tradeoff in terms of usability and rapid prototyping is agood one.

For the time being, the prototype, and the web based gpplication force the user to sdlect a
robot from amenu of pre-created robots. This removes the need for acomplex Ul that

would alow them to design arobot online.

2.3.2 User Designs an Environment

The environment, or workcell of the robot is dso something the user needs to define the
geometry for. Again, both loading from file or online description are supported. In
addition to specifying the environment one time, it is extremey likely that the user will
want to modify the configuration of the environment during use of the system, meaning
that the interface had to support moving and deleting obstacles dready in existence.
Supporting these features proved to be one of the more difficult user interface aspects of
the system.

Designing an environment for arobot is dso atask that isin itsinfancy in the prototype
and in the web basad gpplication. Currently, several environments can be sdlected off a
menu, while additiona obstacles can be placed using the mouse.

2.3.3 User Formulates a Planning Task

Formulating a planning task is one of the Smpler pieces of interaction a user hasto
perform. All the planners currently in the system require the same information about
their task —agtart and agoal configuration. Once a user has specified these two
configurations, the planner can go to work. The way in which a user would specify the
dart and god configuration is very intuitive — diders exist thet ater the values of various
joint varigbles, and adrop down list box alows you to sdect between different joints.
The user receives immediate feedback as to what the changesin joint vaues are doing to
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the robot by observing the robot moving in its environment onscreen. For additiond
feedback, a checkbox indicates whether or not the current robot isin acollison
configuration with its environment.

AsFigure 15 illustrates, a selector exists that allows usersto pick which joint of the robot
to move. Thissdector enablesadider that dlows individud joint vaues to be dtered.
The rendering window immediately reflects the changes the user makes. Push buttons
are present for selecting Sart and god configurations.
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Figure 15: Movement of Joints, and Selection of Start and Goal Configurations

2.3.4 Choosing a Planner
Choosing a planner and dlowing it to perform a planning task are dso fairly trivia for
the user. The pull down planner menu contains alist of planners from which the user can

sHect, and the collison detector menu alows a choice of collison detection agorithms.



Some collision detection dgorithms require additiona parametersto tune their efficiency
— when chosen, these will bring up an additiona dialog box in which al necessary
parameters can be specified.

Fandom Flanner

Figure 16: Pull Down Planner Menu Allows Choice of Different Planners

Once aplanner and a collision detector have been chosen, the user merely needs to press
the plan button, and observe the results. One drawback to the current system, however, is
that once a planner has been engaged and has started its planning task, there is no way to
abort without terminating the entire program. Thisis because the entire planning

operation is running in asingle thread, and it does not check the system clock or any

other sgnd to determine when to quit. The lack of abort capability has the unfortunate
consequence of causing you to have to shut the program down entirdly if the combination
of planner parameters and workcel configuration resultsin extremely long computation
times. This drawback needs to be further addressed when a more in depth user interface
isdeveloped. There should be amethod of terminating a planning task that is taking too
long. One common test case for this Stuation in aplanner is the Stuation in which there
isno vaid path from gart to god. In this case, the planner will often take maxima time
while searching for a path because it does't know when to quit. The user may have
gpecified this environment by mistake, not redlizing there was no path, and should be
given the option of aborting.

2.3.5 Evaluating the Results

In order for the user to determine whether a given planner performed adequately on the
robot and environment provided, there needs to be a mechanism for evauating the
resultant path. A path can be visudized in two ways, the obvious way isto show an
animation of the robot moving through the path, while the second way isto show some of



the robot’ s intermediate positions as “ shadow images’ onscreen. Figure 17 shows how
shadow images appear in the prototype Ul. The number of shadows is user selectable.

Figure 17: lllugtration of Shadow I mages

Another aspect of evauating the results of a planner is that the planner may not have
been developed correctly, and may produce an invalid path; a path that in fact causes the
robot to collide with some obstacles. In this event, the system will show the planned path
and animation, but during the animation if the robot is interfering with any obstacles, a

message box will be shown to the user stating that the computed path doesin fact graze
an obstacle.
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Chapter 3 System Code Design Overview

Now that the functiona description of the interactive system is complete, the design
dructure of the underlying code toolkit can be described with less confusion about what
the individua components are meant to do. Keep in mind that the interactive system
described in section 2.3 is meant to function as both a demonstration of the MPK, and as
adebugging tool. The entire set of MPK functiondity that has been implemented should
be exercised by the interactive system.

Conceptudly, the MPK codeis divided into severa modules that interact heavily with
one another.

Module Function

Universe Contains information about the robot, and environment.

Collison Detector Acts as an intermediary between the Planner and the Universe.
Responds to collison queries posed by the planner.

Planner Contains the dgorithm for path planning that will be implemented
using the collison detector.

Table1l: The ModulesUsed in the MPK

Thisdivison of the system is not arbitrary, it corresponds with the notion that motion
planning can be broken down into some sort of sampling of C-space, and performing a
search on that gpace. The planner mechanism effectively places the samples, collison
detector acts as an evauator, testing each sample for collison. This breakdown is
congstent with the formulation presented in[1].

A typicd use case scenario would involve cregting a Universe object, then populating it
with robots and obstacles. Typicdly, only one robot would exist at atime, but nothing
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from the universe aspect of the system prevents the existence of multiple robots’. A
collison detection object woud then be ingtantiated that used this universe, and
performed whatever internd optimizations it needed to make collison checking fagter.
Once a collison detector exists, a planner can subsequently be instantiated that uses that
collision detector, takes a sart and goa configuration, and produces a path. Figure 18

illudtrates the use case scenario outlined above.

Universe | AAllinianMNAbantAr = PPN |
. Created From
(from Universe) |\IIUIII CUNISIVIIVELECLULS) |

Poses Queries Of

PathBase Plaar Pann
< Produces
(from Paths) (rrom rianners)

Figure 18: Use Case Scenario for a Typical Planning Task

The planner interface to the environment is provided via a collison detection module.
This interface dlows the planner to access information about the number of degrees of
freedom that the robot permits, as well asinformation regarding how the robot and the
environment interact, generaly termed a callision query. Collison queries can be widdy
different depending on the particular needs of a planner, however they generdly are not
overly complex. Severd queriesthat | have dready included are

How many degrees of freedom are there?
Point probe collison query
Line probe collison query (two types)

With the point probe query, the planner needs to know whether, in a given configuration,
the robot isin interference with itsdlf or the environment. Isitinacollison state? This

1 Of courseif no planners exist for multiple robots, then having them exist is almost useless. Developing

these plannersrequires alot of additional thought.
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type of query istermed a point probe query because it corresponds to testing asingle
point in C-space. A second type of query isthat of the line probe query. Given two
configurations of the roboat, isthe path between them free of collisons? This query type
tests a line segment in C-space, hence the terminology describing it asalinear query.

Collison detection isa huge fidd in itsdf, and the body of pre-existing work isvery

large. Thereisno need for usto re-invent the whed. The most desirable manner of
supporting collison detection isto permit as many “off the shelf” packages to be plugged
in as possible, and alow the programmer or the user of the interactive system to choose
the one they fed isappropriate. In fact, the MPK can be used to evauate the utility of
different collison detection schemes in much the same way asit evaluatesthe
performance of motion planning agorithms.

The problem with dlowing multiple off-the-shelf collison detection code libraries to be
used with the MPK isthat they usudly have different interfaces. Didtilling the
information from different collison detection modulesisaproblem in itsdf, so to
amplify the task of the planner developer, a sandard method of interface to collison
detection libraries was settled upon. Essentialy, for each didtinct interface to a collison
detection library that is possible, an interface classiswritten. Aninterface is an abstract
class that cannot be ingtantiated, but exposes severd functions that must be implemented
in any classthat inherits from it. This mechanism serves to isolae the planner from the
implementation of the collison detection library. The planner only usesthe interface
class, thus any class that inherits from that interface could also be used by that planner.
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Icollide Vcollide

Figure 19: Relationship Between Planners, Interfaces and Collision Detectors

In the diagram shown above, a planner that requiresinterfacel can use either the Icollide
or the Vcallide libraries, while a planner that needs interface? could only use Veollide. A
planner requiring interface3 would be unable to use either of the collision detection
libraries shown. The low-level collison detection objects shown in the diagram represent
wrapper classes | have created for each of the third party libraries.

When off the shelf collison detection libraries are identified and added to the MPK, they
should be made into classes. Whatever interfaces the library can support should be made
parents of the newly created object; i.e. the new class should inherit from them. The
functions that the interfaces require must then be written within the wrapper class created
for the library, so that it conforms to the interface. Now the new classis ready for use.
Authors of planners are isolated from this mechanism because they can write the planner
S0 that it uses one or more of the abstract interfaces. When the planner object is later
ingtantiated, it must be provided a collision detector object, but if the object does not
inherit from the required interfaces, the planner object will rgect it. Because of multiple
inheritance, a collision detection object can potentialy support many different interfaces,
but the author of the planner only needs to know about the existence of those that are
required by that particular planner.
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3.1 Basic Types of Mathematical Entities

Before | discuss the operation of the universe, collision detectors and other specific code
modules, | begin with an explanation of the basic types and libraries that had to be
crested as afoundation for the MPK.

3.1.1 3D Vectors

In asystem that will make large scde use of computationd geometry and manipulations
in a 3D scene, one of the mogt fundamenta primitive typesisthat of the Vector. This
class was written from scratch rather than being culled from some other library so thet |
could maintain complete control and understanding of the workings of this object.

Vector4
(from math)

Yeclements : double[ 4 ]

Figure 20: Vector4 Class

The Vector4 class represents a 3D vector using homogenous coordinated4]. This
representation permits me to represent vectors with infinite length eesily, and it fits well
with homogenous matrices, which are used for rigid body transforms and will be
discussed in section 3.1.3. Because avector is such abasic type that mogt, if not all
programmers of the system are likely to use, many of the common operations performed
on avector are provided in the form of overloaded (overridden) operators or member

functions.
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Member function name Functiondity

Operator(] Used to index the contents of the vector. Only indexes from O
to 2 are vdid, because the non-homogenous vaues are
returned.

Operator+ Vector addition

Operator- Vector subtraction

Operator* Scdar multiplication. This operator permits function calls of
theform vector * 5.0 ;

Operator== Equality operator. Compares two vectorsto determineif they
areequd.

Magnitude Returns the length of the vector

MagSquared Returns the square of the length of the vector. Therdatively

expendve square root caculation can be avoided in many
agorithms by comparing the MagSquared of vectors rather

than their magnitudes.
Dot Dot product of two vectors
Cross Cross Product of two vectors
Projection Projection of one vector onto another
Normdize Returns avector in the same direction, but with unity length.

| regret the name chosen for this object within the MPK code. Vector4 does not
accurately describe the function of thisclass. In the spirit of writing “sdf documenting
code’, in which class names should be very descriptive of the function of that class, this
object should be caled Vector3H. Where the H indicates the vector is stored using
homogenous coordinates.

3.1.2 N Dimensional Vectors

Certain congtructsin the MPK system, most importantly points in configuration space,
are best represented in terms of an N dimensiona vector. C-space may be of arbitrary
dimengonality; o it is necessary to permit the structure that contains a point in C-space
to contain any number of dements.
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VectorN
(from math)
Ye#length : unsigned int=0
Yeclements : std::vector< double >

Figure 21: N Dimensional Vector Class

As Figure 21 indicates, the VectorN class contains two data members, its length, and a
Standard Template Library (STL)[5] Structure containing an array of doubles. In STL

notation, a vector represents a dynamicaly resizable array of eements; in this case,

doubles. The STL structure does not provide operations on the vector that resemble

mathematical functions. These were written separately. Also of noteis the fact that

unlike Vector4, VectorN is not specified in homogenous coordinates during any of the

operators below. This fact would be obvious had | properly named the Vector4 class
Vector3H. The absence of the H in the VectorN class name would serve to indicate that

homogenous coordinates were not used.

Member function name Functiondity

Length Used to determine the current size of the vector

Setl ength Altersthe length of the current vector

Operator(] Used to index the contents of the vector. Only indexes from O
to Length() - 1 arevdid

Operator+ Vector addition

Operator- Vector subtraction

Operator* Scadar Multiplication

Operator/ Scdar Divison

Operator== Equality operator — used to determine if two VectorNs are
equivaent

Operator!= Nor+Equality operator returns the boolean complement of

operator==

3.1.3 4x4 Matrices

In addition to Vectors in 3d, many geometrica operations require the presence of 4x4
homogenous matriceg4]. As such, a4x4 matrix object isincluded as part of the MPK.
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Matrix4x4

(from geometry)

Tevalues : double[4][4]

Figure 22: 4x4 Matrix Object

The Matrix4x4 class represents an arbitrary matrix containing 16 eementsin 4 rows and
4 columns. It isnot restricted to being arigid body transformation, so care must be taken

when assgning vaues to the mairix if the programmer intends it to maintain a structure
that can be interpreted as arigid body transform. Several access functions are provided

to make maintaining rigid body transforms eesier.

Member function name

Functiondity

Operator*
Operator*
Operator()

Inverse

Scalg( factor )

Trandate( vector )

Rotate( theta, vector )

Matrix x Matrix multiplication

Matrix x Vector multiplication

Used to index the contents of the vector. Used with two
parameters — matrix( 0, 2 ) would index the second eement of
the zeroth row of the matrix. Keep in mind that bot rows and
columns are enumerated arting with O.

Invertsthe 4x4 matrix. Inverse can be an expensive operation
if cdled often.

Modifies the current matrix by a posgmultiplying it by a4x4
scaing matrix

Modifies the current matrix by posgmultiplying it by a4x4
trandation matrix that trandates by the vector passed asa
parameter. This operation maintains arigid body transform
Modifies the current matrix by postmultiplying it by a4x4
trandation matrix compaosed by rotating theta degrees around
the vector passed as a parameter. This operation maintains a
rigid body transform.
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3.2 Universe
The universe object is the object that the system must first populate before any other
tasks can be accomplished. It will typically contain one or more robots and the obstacles

that represent the environment.

In order for the universe to store both robots and obstacles, these two types of object are
derived from the same abstract base class, entity.

Entity
(from Universe)
ObjectBase RobotBase
(from geometry) (from robots)

Figure 23: Both Robots and Obstacles Derive From Class Entity

Thisbeing said, thereisno red digtinction, as far asthe universe is concerned, between a
robot and an obstacle. All itemsthat can be contained in the universe are referred to as

entities, and are sored in the same list structure.

Universe | #entities R

~)
(from Universe) 1 tfram Uiniversey

0.*

Figure 24: A Universe Contains Many Entities

The entity class exposes the following functions

Member function name Functiondity

Clone Correctly duplicates the entity that is pointed to by a
pointer in a polymorphic manner.

|sinterfering Determines if two entities are interfering with one
another

SetBaseFrame Sets the frame that this entity is defined with respect to

SetFrameM anager Sets the frame manager that this entity should be usng to
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access frames.

GetTransform Gets that transform of the frame that this entity is defined
in relative to the base frame,

CanChecklInterference Determines whether or not an interference check is
alowed between two entities.

BaseFrame Determines the base frame that this entity is defined with
respect to

Because the universe contains alist of pointersto entities, any object that inherits from
this class can exist within the universe without adverse consequences. Later, it will be
demonstrated that constructs such as open chain robots as well as polyhedra meshes and
other objects derive from entities.

3.3 Universe - Kinematics Module
The universe must o contain a kinematic description of the entities contained within,
This description is necessary S0 that users can specify the Sate of the universe using joint

variable notation.

3.3.1 Frames

The kinematic description revolves around the concept of framesand links. A frameis
defined as would be expected in arobotic Smulation program; it represents a 4x4 rigid
body transformation matrix.

Matrix4x4

(from geometry)

Frame
(from geometry)

Figure 25: Frame Objects Derive From 4x4 Matrices
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Because it derives from a generic 4x4 matrix, the frame object has many member
functions overridden. Operations such as matrix multiplication, and inverson aready
exig for thisclass.

In addition to the concept that a frame represents a transformation matrix, is the notion
that aframeis aways defined relative to some other frame, its base frame. In order to
implement this concept, each frame contains an additiond field representing its base
frame.

Frame

(from geometry)

~baseFrame :unsigned int

Figure 26: Frame Class | llustrating baseframe Attribute

The baseframe reference is defined to be an unsgned integer rather than an explicit
pointer to another frame structure. Essentidly the way | wrote this amounts to rewriting
of pointer mechanism of C++. | implemented it that way for severd reasons. Firdt, it can
be difficult to maintain a tree Sructure usng pointer memory management. Second, an
additiond structure the Frame Manager; to be discussed subsequently, exists that
contains dl the framesin the system and | wanted this Sructure to handle dl the memory
management for the frames. If pointers were maintained to these structures, copying
frames while maintaining memory integrity becomes difficult. 1t also becomes
complicated to index specific framesin the tree without actudly traversing the tree every
timeaframeisrequired. The baseFrame number is an index into this frame manager.
Thirdly, using an unsigned integer to represent the number of the frame makes more
intuitive sense to a programmer using the system. Debugging is eesier if the base frame
of frame 2islised as‘1’ rather than * OXOOOM4FEC' .

3.3.2 Links

Robotic kinematics necessitates the concept of links. Inthe MPK software system, these
are objects that encapsulate a mathematical function describing how aframeis dtered by
changing the value of ajoint variable. Usudly links are described usng Denavit —
Hartenberg notation, athough in the future they may not aways be.
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A link, like aframe, must be defined in relation to some pre-existing frame. It dso must
control the motion of one or more framesitsdf. Since it encapsulates a function that
maps ajoint variable q to aframe, it dso has arange over which the input varidbleis
vdid, typicdly referred to asthejoint limits of aparticular joint. A specid case exigtsfor
some classes of joint, particularly revolute joints, wherein no joint limitsexist. These
joints can rotate infinitely in one or more directions. To accommodate this case, an
additiond flag must be present to indicate thet the joint variables “wrap around”.

Inthe MPK system, alink is used to completely describe the structure of onelink of a

robot. It contains akinematic description as well as the geometry of that link.

+objects
LinkBase - ObjectBase
(from Kinematics) (from geometry)
0.*

Figure 27: Link Object Contains Geometry Objects’

As described, alink object completely encapsulates the motion of one or more frames,
corresponding to one or more joint variables. Each link object contains member
functions for setting joint variables. Once the joint variable has been sat, the frames that
depend on that joint variable can be updated to reflect this new vaue by cdling the
UpdateFrames() method.

Member function name Functiondity

SetBaseFrame( undgnedint)  Specify the frame thet is the parent for thislink. All links
must be defined within a pre-exising frame.

UpdateFrames() All the frames that this link controls are updated to reflect
new joint values

BaseFrameNum() Find out the frame that is the parent of thislink

Clong() Duplicates the link based on a pointer to that link

2 The0..* indicates that the LinkBase can contain from O to infinite numbers of objects
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SetFrameManager()
SetJointVariable( double)
JointMax( double)
JointMin( double)
JointWraps( bool )
DoesLinkControl Frame( int)
Saidize()

DeSeridize()
DeSeriaizeAbstract()

Specifies the frame manager that handles memory
management for the frames this link controls.
Altersthejoint variable that drivesthislink

Set the max and min vaues for thejoint varigble.

Specifies whether or not the joint can wrap around its
joint limits. For example, arevolute joint that can spin an
infinite number of times.

Determines whether or not alink controls the motion of a
specific frame

Allows the dataiin the Structure to be written to file or to
astream.

Reedsin the data for the sructure from afile

Readsin the datafor the link structure correctly even if
the datais stored for one of the derived classes of
LinkBase

3.3.3 Links Defined Using Denavit Hartenberg Parameters

The class sructure for linksis meant only as an abstract base class that other classes will
inherit from. An abdract link is neither intended to be ingtantiated, nor isingantiation

possible. In order to use alink, one must choose a particular variety of link, and

ingantiate that instead.  Since Denavit Hartenberg notation is very common, one
derivative of the link base classisthat of a Denavit Hartenberg (DH) link.
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LinkBase
(from Kinematics)

DH_Link

(from Kinematics)

Figure 28: DH Link Object Inherits From Link Base Class

In C++, and most other object oriented languages, if you want to store a collection of
objects of mixed type, they must dl derive from one common base type. Inthe MPK, a
robot is made up of acallection of links, which can potentidly be of severd different
types. Thereasonthat aDH_Link must inherit from LinkBase isso thet dl linksina
robot can be stored in one smple structure. LinkBase is the common base type for dl

link classes.

The DH Link structure has additiona data members that are specific to DH notation.
Hoating point vaues representing the A, D, g and a parameters are required. In addition
to these numeric parametersfor DH links, one of the parametersis controlled by the joint
variable. In order to make this control as trangparent as possible, yet a the same time
efficient, thisis accomplished by induding a Q data member that is a pointer to one of

the floating point DH parameters. Thus when the user changes the joint variable, they
change the vaue pointed to by the Q pointer. The concept of the Q pointer allows one
DH link gstructure to represent prismatic and revolute joints without loss of generdlity.

In actud fact, a programmer using the system should be completely unaware of the

existence of the Q pointer. It will be hidden by the access functions, particularly
SetControllingParameter() and SetJointVariable(). SetControllingParameter () isused to
specify which of the DH parametersis controlled by the joint variddle. The
SetJointVariable() function performs the task of updating the joint variable that controls
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thislink. Specifying a DH link that uses the theta parameter to control its motion would
look something like:

DH Link link ;
Li nk. Set Control | i ngParaneter( DH THETA ) ;
Li nk. Set Joi nt Vari able( 30.0 ) ;

Adjudting the joint varigbles is not immediately reflected in an adjustment of the frame

that thislink controls. Modification of the frame vauesis triggered only when the
UpdateFrames() method is caled. This member function alows the programmer to
specify precisady when the update operation will be performed. In this case it seemslike
abit of extrawork for the programmer, the UpdateFrames() function isfast, and might as
well be cdled every time ajoint varigble changes. However, for different link types, the
function may be sgnificantly more computationally expensive, and in such casss, it is

better to leave the timing of when the function will be cdled in the hands of the
programmer.

A Denavit Hartenberg link controls the pogition of one frame in the frame manager. The
formula used to determine the position of the frame isincluded as part of the Appendix.

The DH_Link dass contains many member functions, most of which are directly
inherited from the base class LinkBase. Many of these inherited functions are overriden
in the derived class, and must be implemented in a manner specific to the DH notation.
The functiondity, however, is the same as that indicated in the base dlass. Additiond
member functions are outlined below.
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Member function name Functiondity

SetAlpha( double) Specify the Denavit Hartenberg parameters for the joint
SetA( double)

SetD( double)

SetTheta( double)

SetControllingParameter()

SatJointVariable
FrameNum()

AddObject()

Specify which of the parameters is connected to the joint
vaue.

Alter the parameter that is connected to thejoint varigble
Since aDH link can only control one frame, it iseader to

cdl this function than the DoesLinkControl Frame() function
of the parent class.

Adds geometry to the frame that thislink controls.

3.3.4 Frame Manager

Both the Frame class and the Link class above depend on the presence of aframe

manager object. Thisobject exists as a part of a universe to keep track of ahierarchy of

frames. Each universe and each collison detection module will have one frame manager

goiece. The frame manager dso handles memory dlocation for any framesthat are

referenced in one particular universe. It doesthisdlocation by soring dl the framesina

dynamic array.

Eramao
+allworld
/| Vv gy

FrameManager
(from Kinematics)

Frame
(from geometry)
+allFrames

Figure 29: Frame Manager Storesall the Frames
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The allFrames member shown in Figure 29 represents the storage space for each
individud transformetion frame. Each of the frames stored in allFrames depends on a
link in order to be updated, and represents a transformation relive to the base frame of
that particular frame.

In order to speed up certain computations, an additiond array of framesis maintained by
the frameManager. The allWorld array represents transformations relative to the world
frame, frame 0. The primary reason thisarray is maintained is that matrix multiplication

is an expensve operdion if it needs to be done many times. One common operation is
computing the transformation matrix relating two frames. During this process, the
transformations between each of the frames in question and a common base frame are
computed. Because thisfunction is caled for in avariety of Stuations, often without a
changein joint varigbles, it would be beneficia to retain some of the intermediate
variables that were computed, which is exactly what maintaining the alWorld array does.

Methods that the frame manager supports were designed so that the programmer using
the MPK can access dl the necessary information about a given frame easily. The
methods include those to add additiona frames, determine the contents of a frame,
determine the reldive trandformation matrix relaing two frames, etc.

Member function name Functiondity

AddFrame() Cregtes anew frame, dlocates memory for it, and returns an
integer indicating its frame number. Smilar like maloc() or
new() in C/C++

GetNumberOf Frames() Returns the tota number of frames controlled by this frame

manager.

Operator[ int ] Returns a specific frame.

VdidaeFrame( int) Checks the parent frame of the specified frame to make sure
there are no circular references. Frames that are not defined
relative to the base frame, frame O

GetFrame(int) Returns a copy of the frame indicated
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GetFrameReference(int)  Returns apointer to the frame indicated

GetTrandformRel ative( Returns the transformation matrix relaing two frames.
int, int)
BaseFrame( int) Returns the base frame of the frame in question.

SetBaseFrame( int, int ) Alters the base frame of the frame in question.
MarkFrameChanged( int Mark aframe as having changed, o that dl the cached
) frames that depend on it will be recomputed.

3.4 Geometry Module

In order to maintain a description of the robot and the environment, geometrical data
gructures and functions are included in the MPK. Some of the objects in this module
derivefrom entity and as such can be added to the universe as obstacles or added to alink
as link geometry. Other objects, like VRMLreader are access objects u