MPK: An Open
Extensible Motion
Planning Kernel

lan Gipson, Kamal Gupta*

School of Engineering Science

Simon Fraser University

Burnaby, British Columbia V5A LS6
e-mail: gipson@sfu.ca, kamal@cs.sfu.ca

Michael Greenspan

National Research Council of Canada
Ottawa, Ontario, Canada

e-mail: Michael.Greenspan@nrc.ca

Received 27 November 1999; accepted 3 April 2001

The motion planning kernel (MPK) is a software system designed to facilitate develop-
ment, testing, and comparison of robotic and geometric reasoning algorithms. Exam-
ples of such algorithms include automatic path planning, grasping, etc. The system
has been designed to be open and extensible, so that new methods can be easily added
and compared on the same platform. © 2001 John Wiley & Sons, Inc.

1. INTRODUCTION

The field of robot motion planning comprises a
large body of academic research? and it remains an
active area of investigation. Broadly speaking, it
refers to the ability of a robot to plan its own
motions in the presence of obstacles in the environ-
ment. The case when the environment is completely
known a priori, is called model-based motion plan-

*To whom all correspondence should be addressed.

Contract grant sponsors: National Research Council of Canada
(NRO), National Sciences and Engineering Research Council of
Canada (NSERC), and MD Robotics.

ning and has received the greatest attention. The
basic approaches to model-based planning have
been well characterized” and several practical algo-
rithms have been proposed in the literature.! While
many consider model-based motion planning to be
a maturing field, little if any effort has gone into the
comparison of such algorithms, and it remains a
difficult task for a practitioner /researcher in the
field to decide which algorithm solves a given prob-
lem best.

The majority of the research effort in the field
has been focused on developing new representa-
tions and search methods, and the code artifacts

Journal of Robotic Systems 18(8), 433—443 (2001)
© 2001 by John Wiley & Sons, Inc.

438 -« Journal of Robotic Systems—2001

tend to be of a home-grown variety, unsuitable for
extensive reuse. In addition, although many re-
searchers believe that aspects of this technology
could be well utilized in industrial systems, there
has been little direct industrial application of mo-
tion planning methods.! While this is a complex
issue, one contributing factor has been a scarcity of
effective software tools. Commercially available
robot programming packages (IGRIP,> ROBCAD,*
and SILMA®) tend to have some collision detection
capabilities but hardly any motion planning func-
tionality. ACT® does provide some motion planning
capability, but it is geared toward a particular tech-
nique. In general, while these systems indeed pro-
vide robot programming environments, they tend to
be of a proprietary nature where users are permit-
ted little if any access to the source code. The
underlying algorithm for a particular function (say
collision detection) is generally invisible to the user
and cannot be changed.

The motion planning kernel (MPK) is aimed at
addressing these issues. It is a general software
toolkit that facilitates the testing and benchmarking
of various motion planning methods, as well as the
design and implementation of new methods.

The system has been designed to be used and
extended by many researchers. Rather than limiting
users only to the functionality that we have explic-
itly provided, there are convenient ways to incorpo-
rate new components into the code. New collision
detection algorithms could be added to the software
as they are developed, as could new planning algo-
rithms and geometric descriptions. Rather than at-
tempting to anticipate and provide everything that
all potential users might need, basic functionality
has been provided, along with the ability for users
to extend the system themselves. This “design for
extensibility”” is a primary benefit of the MPK ap-
proach.

The MPK contributes to the field of robotics and
motion planning a general platform upon which to
build programs and test robotic algorithms. It pro-
vides users a code framework that allows them to
treat various robot specific operations as abstrac-
tions, similar to something of an application pro-
gramming interface (API) level. The MPK combines
modern object oriented software design with robotic
programming concepts developed over the past 20
years to provide a toolkit that facilitates design,
implementation and testing of robotic algorithms.

Additionally, writing code in the MPK frame-
work allows users immediate access to a wide range
of sample data that we have created. The MPK

allows users to make use of previously created
libraries of robots, geometry, and working environ-
ments, thereby simplifying the testing of methods
and allowing for benchmarking to be performed on
an equal footing. This ease of extensibility will al-
low for the addition of new motion planning algo-
rithms as they are developed. Furthermore, we plan
to make the system accessible over the Web, so that
researchers /practitioners in dispersed locations can
use the MPK for testing and sharing new motion
planning algorithms.

The MPK is not yet a fully featured robotic
programming environment. The current version pri-
marily facilitates developing and implementing
robot algorithms with a geometric flavor, such as
motion planning. Features such as grasping of ob-
jects, force planning, and proper dynamic simula-
tion are not yet implemented.

The MPK code library is written in object ori-
ented C+ +. It uses only standard C+ + and no
platform dependant features, so it can be used by
researchers on any standard hardware configura-
tions.

This article is organized as follows. A survey of
prior work is presented in Section 2. In Section 3,
the major elements of the MPK system and their
interrelationships are described in detail. The user
interface and planned Web enabled feature is dis-
cussed in Section 4, a benchmarking example is
shown in Section 5, and the article concludes in
Section 6 with a summary and a discussion of
future work.

2. RELATION TO PRIOR WORK

Development of a software toolkit for robotic pro-
gramming is not a novel idea. As mentioned earlier,
commercial toolkits exist for reasons similar to those
stated above. Many have become rather dated, how-
ever, as throughout the software industry mono-
lithic, closed form C language libraries have been
replaced with more modular, object oriented sys-
tems, with C+ + being the language of choice for
many researchers. In this aspect, the object oriented
nature and C+ + interface of the MPK is a marked
improvement over earlier systems.

The planned Web based interactive portion of
the MPK also borrows from existing work. For ex-
ample the Interactive Benchmark system presented
in ref. 7 provides a system for evaluating a few
algorithms for nonholonomic motion planning of
car-like vehicles. Other similar online systems in-

clude FixtureNET? a system for evaluating the
problem of grasping parts via the Internet. Both of
these systems constrain the problem to be solved to
a very small subset of the motion planning field.
They also severely limit the nature of the problem
that can be specified because they constrain all
problems to two dimensions, and they do not per-
mit descriptions of new geometries to be uploaded
from files. Users are forced to draw parts and obsta-
cles themselves. Modular software packages for
control aspects of robotics do exist”!’; however these
do not address geometric motion planning aspects.
In fact these packages would be complementary to
the MPK. The University of Minnesota maintains an
online library of geometric applications, although
none of them are specifically related to robotics."
Also, many data structures and algorithms are bor-
rowed from the LEDA library'?> maintained by Al-
gorithmic Solutions.

3. CODE LIBRARY

Conceptually, the MPK code is divided into several
interacting modules, which are listed in Table I
This division of the system corresponds to the gen-
erally accepted notion that motion planning can be
broken down into some sort of search and sampling
of the configuration space (C-space) of the robot.
The search (or planning) mechanism effectively
places the samples, and a collision detector acts as
an evaluator, testing each sample for collision. This
breakdown is consistent with the formulation pre-
sented in ref. 1.

A typical way in which a programmer would
use the MPK would be to create a universe object

Tablel. The modules of MPK.
Module Function

Universe Contains information about the robot
and environment

Collision Acts as an intermediary between the

detector planner and the universe; responds

to collision queries posed by
the planner

Planner Contains the algorithm for path
planning that will be implemented
using the collision detector

Geometry Library of data structures and routines

used by the universe to represent
geometric data

Gipson, Gupta, and Greenspan: MPK + #35

and then populate it with robots and obstacles.
During the testing stage of a new algorithm, popu-
lating the universe would be done via some of the
preexisting sample data. Typically, only one robot
would exist at a time, but nothing prevents the
existence of multiple robots. A collision detection
object would then be instantiated that used this
universe and performed whatever internal optimiza-
tions it needed to make collision checking faster.
Once a particular collision detector has been imple-
mented, a planner can subsequently be instantiated
that uses that collision detector, takes a start and goal
configuration, and produces a path. Figure 1 illus-
trates the use-case scenario outlined above.

An example of code that would perform some
simple planning tasks is shown in Figure 2. The
example shows how easy it is for a programmer to
incorporate MPK planning functionality into a pro-
gram. Also shown is how various planners can be
swapped between with ease.

The code example in Figure 2 serves to create a
universe object and load a robot and some obstacles
from a file. Two different motion planners, each
using two different collision detection methods, are
created. Start and goal configurations are set up for
the planners, and planning is then executed. The
planners produce paths consisting of a sequence of
joint angles, which are output to the console win-
dow.

3.1. Universe

The universe object, as the name implies, represents
the entire physical world: both the robot(s) and
other workspace objects. A user must first populate
the universe before any other tasks can be accom-
plished. The universe in turn is composed of a col-
lection of the abstract base class called entity. Both
robots and obstacles are derived from entity as
shown in Figure 3. Entities derive their location in

CullisionDetecior sl Planner
Samplas Produces
Jniverse Path

Figure 1. Program flow for a typical planning task.

836 -+ Journal of Robotic Systems—2001

void main{)

{

//load data into the universe object
Universe theUniverse ;
theUniverse.LoadRobotFile("puma robot.txt")
theUniverse.LoadObstacleFile("workcell.wrl"

//create some collision detectors
CD_Vcollide collisionDetectorl(theUniverse)
CD_So0lid collisionDetector2(theUniverse) ;

//create some planners
PL_Linear plannerl ;
PL_Seqguential planner2 ;

i

)

H

i

//set the planners to use the collision detectors
plannerl.SetCollisionDetector (collisionDetectorl) ;
planner2.SetCollisionDetector (collisionDetector2) ;

//set up the start and goal configurations
startConfig = theUniverse.CurrentConfig() ;
Configuration goalConfig

GoalConfig = theUniverse.CurrentConfig() ;
goalConfig{ 0] = 0 ;

goalConfig[1] = 90 ;
plannerl.SetStartConfig(startConfig)
plannerl.SetGoalConfig(goalConfig) ;
planner2.SetStartConfig(startConfig }
planner2.SetGoalConfig(goalConfig) ;

//perform the planning

Configuration startConfig ;

bool plSuccess
bool p2Success

= plannerl.Plan(
= planner2.Plan(

//view the results
if(plSuccess == true)
{

plannerl.GetPath() .Output{()
}
if({ p2Success ==
{

true)

planner2.GetPath() .Output ()
}

)
)

H

H

i

Figure 2. Complete planning example.

the three dimensional physical world from the posi-
tion and orientation of the frame they are defined
with respect to. As such, an entity possesses both a
kinematic and a geometric component. Since every

ntity
{from Universe

/// \
// \\
/ \
/ \
/ N\
. ObjectBase RobotBase
(from geometry) (from robots)

Figure 3. Both robots
entity.

and obstacles derive from class

entity is defined with respect to a frame, if that
frame moves, so does the entity. A frame represents
a transformation frame in three-dimensional (3D)
space. Refer to Figure 4 for a standard universal
modeling language (UML) diagram outlining this
relationship. In both diagrams, arrows with white
triangles represent object inheritance, while arrows
with diamonds represent object aggregation. Filled
diamonds represent containment by value, while
hollow diamonds represent containment by refer-
ence. A robot is composed of links described in
Denavit—Hartenberg notation. Link objects are re-
sponsible for adjusting the values contained in a
frame object.

Parts, obstacles, the work cell, and robots all
inherit from the entity base class within the uni-
verse. Parts will be entities that the robot interacts
with; items will be entities that the robot is sup-
posed to grasp or assemble. Obstacles will be those
entities that are immutable from the robot’s per-

Itk Link.
Links Update Frames ‘
N Mo
i Frame. | i Frame
Entities are Defined with S
Respect to a Frame
7 ’,“ A
| Enpty - Eniity
b ¢

Entities Contain a Set of
Geometry

i

 Geometry | | Geometry | | Geometry

F Geometry”

Figure 4. Relationship between links, frames, and enti-
ties.

spective. What is considered a part in one instance
can be an obstacle in a different instance. Consider,
for example, an assembly problem. The robot will
grasp the first part and place it in the proper loca-
tion. That part now becomes an obstacle when the
robot is attempting to place the second part.

3.2. Geometry

To maintain a description of the robot and the
environment, geometric data structures and func-
tions are included in the MPK. Some of the objects
associated with geometry derive from the class en-
tity and as such can be added to the universe as
obstacles or added to a link as link geometry. Other
objects, like the VRMLreader, are accessory objects
used to load geometry from files.

It is important to remember that the MPK is not
meant to represent a fully featured computer-aided
design (CAD) modeler, and as such the geometry
portion has been kept deliberately simple, and users
will not be able to interactively design complex
geometry. The understanding is that quite a lot of
good software exists for designing geometry (Solid-
Works,” 3D Studio Max'*). The philosophy of the
MPK is to allow users to import geometry from a
wide variety of CAD formats.

The current version of the MPK supports the
following object types and will be expanded as time
and demand for new objects permit:

1. Polyhedral surface meshes,

2. Spheres,

3. Line segments, and

4. Groups of the above named objects.

Gipson, Gupta, and Greenspan: MPK <« 8#37

Future additions to the MPK may include solid
models, as opposed to boundary representations,
spherical decompositions of objects, and quadtrees
and octrees as described in ref. 15.

3.3. Collision Detection

A planner’s main interface to the environment is
provided via a collision detector object. This inter-
face allows the planner to access information about
how the robot and the environment interact, gener-
ally termed a “collision query.” Collision queries
can be widely different, depending on the particular
needs of a planner; however they generally are not
overly complex. Several basic queries already im-
plemented are:

e Point probe collision query;
e Line probe collision query (two types).

The point probe query specifies one complete
configuration of the robot (i.e., a point in configura-
tion space) and returns a true or false indication of
whether that configuration is collision-free. The line
probe query is actually an extremely simple local
planner. It forms a straight line between two points
in configuration space, and determines if this path
can be traversed without collisions. The justification
for including these particular queries is that they
are the most basic and most widely used. More
complex collision queries will be added in future
revisions.

Collision detection is a huge field in itself, and
the body of preexisting work is very large."” The
most desirable manner of supporting collision de-
tection is to permit interfacing with as many exist-
ing packages as possible and to allow the program-
mer or the user of the interactive system to choose
the one that he or she feels is appropriate. The MPK
can be used to evaluate the utility of different colli-
sion detection schemes in much the same way as it
is used to evaluate the performance of motion plan-
ning algorithms.

The problem with allowing multiple existing
collision detection code libraries to be used with the
MPK is that they have a variety of different inter-
faces. Distilling the information from different colli-
sion detectors is a problem in itself, so to simplify
the task of planner developer, a standard method of
interfacing with the collision detection libraries was
settled upon. For each distinct interface to a colli-
sion detection library that is possible, an interface
class is implemented. An interface is an abstract

438 -« Journal of Robotic Systems—2001

class that cannot be instantiated, but exposes sev-
eral functions that must be implemented in any
class that inherits from it. This mechanism serves to
isolate the planner from the implementation of the
collision detection library. The planner only uses the
interface class, and thus any class that inherits from
that interface could also be used by that planner.

In Figure 5, a planner that requires interfacel
can use either the I_collide' or the V_collide"”
libraries, while a planner that needs interface2 could
only use V_collide. A planner requiring interface3
would be unable to use either of the collision detec-
tion libraries shown. The low-level collision detec-
tion objects shown in the diagram represent wrap-
per classes created for each of the third party li-
braries.

Collision detectors that are currently integrated
into the system include:

1. A homegrown, simple collision detector,
2. V_collide, and
3. Solid."

The simple homegrown collision detector is a
crude scheme, intended to act as a baseline for
comparing other algorithms. It performs a brute
force intersection test between every pair of geomet-
ric objects that can collide in the system. There is no
optimization performed as there is in the other
systems. Future iterations of the MPK will include
many other more sophisticated collision detection
schemes including the one in ref. 19.

As mentioned earlier, extensibility is key in the
MPK. One area in which researchers may extend the
system is the addition of different collision detec-

| interlace1

Figure 5. Relationship between planners, interfaces, and
collision detectors.

tors. To create a new collision detector, a researcher
would have to create a class NewCollisionDetector.
This class would derive from whatever interfaces
were appropriate. The researcher would then alter
the behavior of the constructor for this class—this is
the function to which the universe object is passed.
It is here that the researcher would perform much of
the algorithmic work of the new collision detector.
In addition, the researcher would have to imple-
ment the query functions that are to be supported,
so that they take advantage of the optimizations.

3.4. Planners

The MPK system may be used to evaluate the
performance of a wide array of motion planning
algorithms. Programmers will develop their own
algorithms within the MPK framework and add
them to the system. However, the interactive MPK
must have several “baseline” algorithms as a
starting point as shown in Table II. As such we
have implemented certain algorithms and plan to
implement others, often with the help of other
developers.

Implicit in the notion of a planner within the
MPK framework is the notion of a task. The only
task that a planner is currently capable of respond-
ing to is moving to a specific, fully specified goal
configuration. The inclusion of more complex tasks
is something that is being actively investigated.
Examples include grasping planning, partially spec-
ified goal configurations, inverse kinematics, both
point-to-point™ and along a specific tool frame path,
and manipulation planning,* etc.

The code structure of most motion planning
algorithms is consistent with the object oriented
nature of the MPK. A planner is an object that
derives from the PlannerBase abstract base class.
This parent class forces each planner object to im-
plement several member functions. Chief among the

Table Il. Planners implemented within the MPK.
Planner implemented Comments
Ariadne’s clew algorithm20 Implemented
Sequential planner?* Implemented
Linear planner (local planner) Implemented
RPP?? Planned
Probabilistic roadmap? Implemented
SANDROS* Planned

A* planner Implemented

member functions is the Plan() function that in-
structs the planner to examine its current task, and
develop a sequence of motions to complete it. As an
example, code is presented to illustrate the ease of
developing a planner algorithm from within the
MPK framework. Figure 6 contains the entire code
for the linear planner algorithm, a simple local plan-
ner that plans a path between two completely speci-
fied configurations by discretizing a line segment
between them in C-space into a finite number of
points. If each of the points is collision free, then a
path is said to exist along that line segment.

The code in Figure 6 represents the contents of
the Plan() method in the object that implements
the linear planner. This was the only method that
needed to be implemented to write this new plan-
ner. All the construction and deconstruction, setting
of start and goal configurations, etc. is done by the
parent class.

4. USER INTERFACE AND WEB BASED SYSTEM

The planned primary architecture of the interactive
MPK system consists of a front end client communi-
cating with a server handling complex processing
(Fig. 7). This could consist of a Web based client

path.AppendPoint (startConfig) ;

const long int steps = 1000 ;
path.Clear() ;

//test all points from start to goal
Configuration current = startConfig ;
Configuration offset = goalConfig-startConfig;
for(long int i = 0; i <= steps; i++)
{

if

(
collisionDetector->IsInterfering(current))

(

return false ;

}

path.AppendPoint (current) ;

current += { offset * {(1.0/steps) }

}

return true ;

Figure 6. Code example for the linear planner.

Gipson, Gupta, and Greenspan: MPK + #39

Java Ul
Running Through Web

C++ Server
Running at SFU

Figure 7. Example of the client server system architec-
ture.

communicating with a powerful server, or the client
and server could be linked together and run on the
same machine. The framework is meant to be flexi-
ble. The front end will allow the user to design a
robot and environment and to set start and goal
configurations. Essentially it will allow the client
user to specify a problem to be solved by a planner
through the MPK system. Once the problem has
been fully specified, it will be sent to the server for
processing. When the server has completed this
task, it will return the results.

For one client, we plan to use a Java front end
because it is a cross-platform, cross-browser solu-
tion, providing a large base of people who can test
out the MPK. C+ + was chosen for the server side
implementation due to the large number of third
party libraries that exist in C/C+ + that could be
added to the server. A PC platform was chosen
because this type of machine is becoming more and
more common in research and in industrial applica-
tions and is a cost effective option. Communication
between client and server is performed via TCP /IP
sockets, and display of the robot in the Web based
client applet uses Java3D.

The typical scenario in which a user would
operate this application is shown in Figure 8. De-
signing the robot and the environment will be per-
formed by selecting options from the menu or load-
ing files. Specifying robot configurations for the
planning task is done interactively using sliders and
viewing the robot in a window. Results of planning
are displayed to the user either as an animation or
as a sequence of intermediate shadow images of the
robot. As of now, a user interface has been imple-

Design a robot

Design an environment composed of obstacles
Formulate a planning task

Choose algorithms, and run a test

Evaluate the results

b W=

Figure 8. User workflow for the Web based application.

880 - Journal of Robotic Systems—2001

mented in C+ + and integrated with the MPK li-
brary to provide a MS Windows application that
mimics the planned Web based system without
using the Internet. Figure 9 illustrates this user
interface.

The example in Figures 10-12 shows a simple
scenario in which a user designed a task for a
manipulator, placed an obstacle in the way, and
examined the results. The user then added an addi-
tional obstacle. Note the convenient intermediate
shadow images.

5. BENCHMARKING DIFFERENT PLANNERS:
AN ILLUSTRATION

To illustrate the benefits of the MPK as applied to
benchmarking, we created a simple example prob-
lem and ran various planning algorithms on it. The
statistic of interest was the total time taken to com-
plete the plan. The algorithms that we used for the
test include Ariadne’s clew (ACA), a variant of the

< MPKgl - MPKgl1

SRR
[ooins .-| : 57 ||—J—
Set St Configursfion |
SetGosl Configuraton |
: ey
Ready Eaim,

Figure 9. Movement of joints and selection of start and
goal configurations.

Figure 10. User has specified a start and a goal.

probabilistic road map algorithm known as Lazy
PRM?, and A*. The example problem was quite
simple. It consisted of moving a 4 degree of free-
dom planar arm among cylindrical obstacles. 3D
examples of motion planning can often be difficult
to visualize and reproduce in print. This example
was chosen because it is simple enough that it can
be easily visualized in two dimensions.

Figure 13 illustrates the example used for
benchmarking. The start configuration is in the up-
per right quadrant, and the goal configuration is in
the lower left quadrant. The manipulator arm has
four links and is constrained to the plane of the
page. Collisions with the circular obstacles are not
permitted.

Figure 11. User added an obstacle that the robot must

avoid.

Figure 12. User added an additional obstacle to make
the task progressively harder.

Both ACA and PRM are randomized (nature
and extent of randomization differ) algorithms. To
properly benchmark these algorithms, many runs
were performed. Figure 14 and also Table III show
the minimum time and maximum time, represented
by the endpoints of the vertical lines, and 33rd and
66th percentiles, represented by the top and bottom
of the rectangle.

It appears that for this example problem, ACA
is the fastest algorithm, although it also has the
widest variation in completion times (Table III).
PRM is slightly slower, but has less variation in
completion times. A* is a deterministic algorithm

100

Gipson, Gupta, and Greenspan: MPK « A&481

¥
& & \ |

L —

Y 4D

W

®
& &

Figure 13. Four link robot benchmarking example.

which appears to perform worse than both the ran-
domized schemes.

This analysis is meant to illustrate the compara-
tive benchmarking abilities of the MPK and not as
an in-depth analysis of the aforementioned algo-

Table lll. Elapsed times for various planners.

Average Minimum Maximum Standard
Planner time time time deviation

A* 87 87 87 0
PRM 34.86 31 37 2.54
ACA 24.25 6 66 19.69

90

80

70

60

50
40

Elapsed Time

30

20

10 }

ACA

PRM ASTAR

Figure 14. Elapsed times for various planners.

842 -« Journal of Robotic Systems—2001

rithms. All the above algorithms have individual
tuning parameters that were not optimized before
the tests began. All times were measured on an Intel
Pentium III-500 MHz processor with 128 MB of
RAM.

6. CONCLUSION

The MPK system is a software toolkit to facilitate
the development, testing, and comparison of robotic
algorithms, particularly those with a geometric fla-
vor such as automatic path planning, grasping, etc.
It includes objects to simplify kinematic computa-
tions, geometric objects, and collision detection,
which are some of the most time consuming areas
of designing robotic software. It is a system de-
signed for extensibility, i.e., incorporating algo-
rithms designed and developed at different places
in one integrated environment. The planned Web
enabled front end to the system will allow re-
searchers to experiment with different motion plan-
ning algorithms online on various different robots
and environments.

In summary, the main points we would like to
emphasize about the MPK are as follows:

e Ability to easily load descriptions of robots
and geometries.

e Ability to choose from a variety of planning
algorithms.

e Ability to choose from a variety of collision
detection algorithms.

e Easy to plug in code for new algorithms—
planning and collision detecting.

e Ability to add new planners and collision
detectors to the Web interface as they are
developed—a good way to evaluate others’
work.

e Implementation of a MS Windows application
that mimics the Web based application with-
out using the Internet. This can aid re-
searchers in their debugging effort by provid-
ing a convenient test bed in which to experi-
ment while coding.

Several current and past students and researchers in
the SFU Robotics laboratory contributed to the devel-
opment of the MPK. We would like to thank Juan
Manuel Ahuactzin, Francisco Javier Blanco Ro-
driguez, Gillian Lo, Yong Yu, Morten Petersen, and
Shane Schneider for all their assistance.

REFERENCES

1. K.K. Gupta, “Overview and state of the art,” Practical
motion planning in robotics: current approaches and
future directions, Wiley, New York, 1998, pp. 3-8.

2. J. Latombe, Robotic motion planning, Klewer Aca-
demic Publishers, Norwall, MA, 1990.

3.].S. Mogal, IGRIP—a graphics simulation program for
workcell layout and off-line programming, Robots 10
Conf Proc, 1988, pp. 65-77.

4. http:/ /www.tecnomatix.com /Products /ROBCAD.

asp.

. http:/ /www.silma.com.

. E. Mazer et al., ACT: a robot programming environ-
ment, Proc IEEE Int Conf Robotics Automat, April
1991, pp. 1427-1432.

7. S. Piccinocchi, Interactive benchmark for planning al-
gorithms on the Web, Proc 1997 IEEE Int Conf Robotics
Automat, April 1997, pp. 399-405.

8. http:/ /teamster.usc.edu/fixture /.

9. P.I. Corke, A robotics toolbox for MATLAB, IEEE
Robotics Automat Mag 3 (1996), 24-32.

10. R. Gourdau, Object-oriented programming for robotic
manipulator simulation, IEEE Robotics Automat Mag
4 (1997), 21-29.

11. http:/ /www.geom.umn.edu/apps/.

12. K. Mehlhorn and S. Naher, LEDA: a platform for
combinatorial and geometric computing, Commun
ACM 38 (1995), 96-102.

13. http:/ /www.solidworks.com/.

14. http:/ /www ktx.com /3dsmaxr2 /.

15. Collision detection and geometric complexity, Part 3,
Practical motion planning in robotics, A.P. Del Pobil,
K. Gupta (Editors), Wiley, New York, 1998, pp.
201-274.

16. J. Cohen, M. Lin, D. Manocha, and K. Ponamgi, ICOL-
LIDE: an interactive and exact collision detection sys-
tem for large scale environments, Interactive 3D
Graphics Conf, Monterey, April 1995, pp. 189-196.

17. T.C. Hudson, M.C. Lin, J. Cohen, S. Gottschalk, and D.
Manocha, VCOLLIDE: accelerated collision detection
for VRML, Proc 2nd Annu Symp Virtual Reality Mod-
eling Language, Monterey, 1997.

18. http:/ /www.win.tue.nl/cs /tt/gino/solid /.

19. M. Greenspan and N. Burinyk, Obstacle count inde-
pendent real-time collision avoidance, ICRA96: Proc
1996 IEEE Int Conf Robotics and Automat, Minneapo-
lis, April 1996, pp. 22-29.

20. J.M. Ahuactzin and K. Gupta, The kinematic roadmap:
a motion planning based global approach for inverse
kinematics of redundant robots, IEEE Trans Robotics
Automat RA-15 (1999), 653-670.

21. KXK. Gupta and X. Zhu, Practical global motion plan-
ning for many degrees of freedom: a novel approach
within sequential framework,] Robotic Syst 12 (1995),
105-117.

22.]J. Barraquand and].C. Lathombe, Robot motion plan-
ning: a distributed representation approach, Int J
Robotics Res 10 (1991), 628—679.

23. L. Kavraki, P. Svestka, J.C. Latombe, and M. Overmas,
Probabilistic roadmaps for path planning in high-di-
mensional configuration spaces, IEEE Trans Robotics
Automat 12 (1996), 556—580.

o U1

24. Y. Hwang, P. Xavier, P. Chen, and P. Watterberg,
““Motion planning with SANDROS and the configura-
tion space toolkit,”” Practical motion planning in
robotics: current approaches and future directions,
Wiley, New York, 1998, pp. 55-77.

25. J. Ahuactzin, K. Gupta, and E. Mazer, Manipulation
planning for redundant robots: a practical approach,
Int] Robotics Res 17, (1998), 731-747.

26.

27.

Gipson, Gupta, and Greenspan: MPK <« #483

P. Bessiere, E. Mazer, and J. Ahuactzin, The Ariadne’s
clew algorithm: global planning with local methods,
Algorithmic Foundations of Robotics, First Workshop
Algorithmic Foundations of Robotics, Wellesley, MA,
1994, pp. 39-47.

R. Bohlin and L.E. Kavraki, Path planning using lazy
PRM, Proc Int Conf Robotics Automat, 2000, vol. 1,
pp. 521-528.

	1. INTRODUCTION
	2. RELATION TO PRIOR WORK
	3. CODE LIBRARY
	Table I.
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Table II.

	4. USER INTERFACE AND WEB BASED SYSTEM
	Figure 6.
	Figure 7.
	Figure 8.

	5. BENCHMARKING DIFFERENT PLANNERS: AN ILLUSTRATION
	Figure 9.
	Figure 10.
	Figure 11.
	Figure 12.
	Figure 13.
	Table III.
	Figure 14.

	6. CONCLUSION
	REFERENCES

